

CHARACTERISTICS

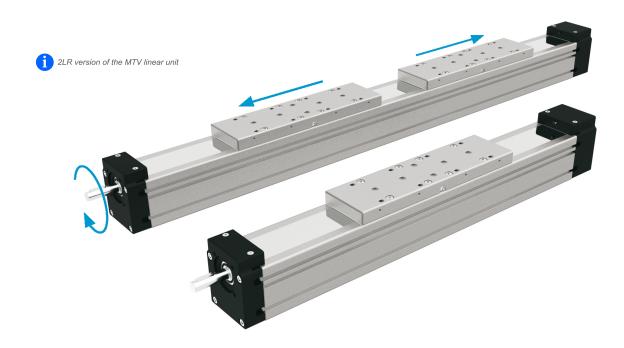
The MTV series describes Linear Units with precision ball screw drive, integrated guide rail and compact dimensions. They provide high performances features, such as high speeds, good accuracy and repeatability.

They can easily be combined to multi-axis systems.

Excellent price-/performance ratio and quick delivery time are ensured.

The compact, precision-extruded aluminum Profile from 6063 AL with integrated Zero-backlash Ball rail guide system, allows high load capacities and optimal cycles for the movement of larger masses at high speed.

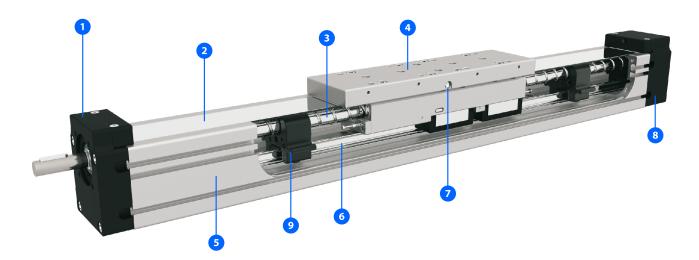
In the Linear Units MTV a precision ball screw, with tolerance class ISO7 (ISO5 on request), with reduced backlash of the ball nut is used.


A corrosion-resistant protection strip, protects all the parts in the profile from dust and other contaminants. The aluminum profile includes T-slots for fixing the Linear Unit and for attaching sensors and switches. Also, a Reed switch can be used here.

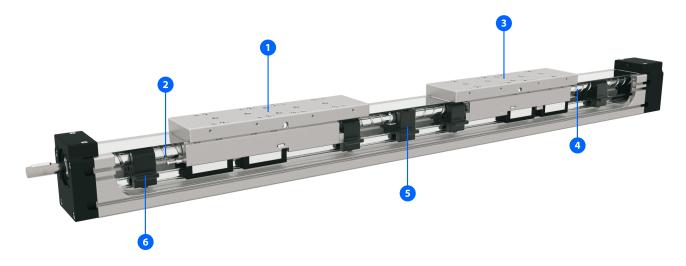
The carriage, with central lubrication port, allows easy central re-lubrication of ball screw and Ball rail guide and provides the possibility to attach additional accessories on the side.

For the Linear Units MTV various adaptation options, for attaching (or redirecting), for Motors or Gearboxes are available.

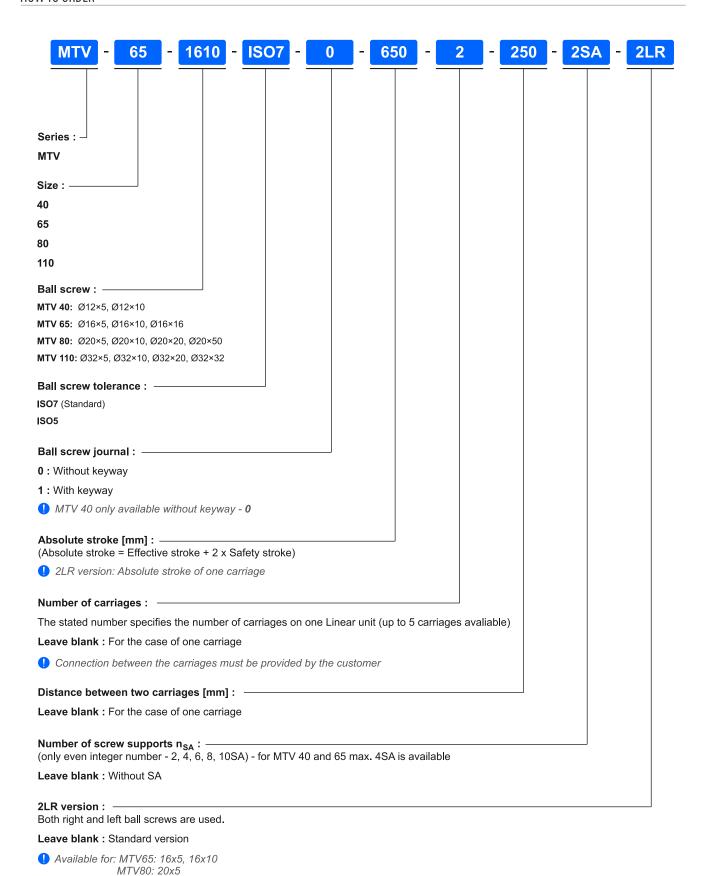
To achieve higher speeds at the same stroke of the linear unit, the ball screw support system can be integrated. With this feature vibrations and deflections of the ball screw are reduced, therefore longer strokes are possible. The linear unit with integrated support system can have a higher axial load capacity. Ball screw supports are made out of high quality plastic materials with high wear resistance properties. Our system enables ball screw support in horizontal or vertical positioning of the linear unit.


A 2LR version of MTV linear unit is available, where two carriages are moving simultaneously in opposite directions. Both right and left handed precision ball screws are used, which are rigidly connected. The ball screw support system can also be integrated.

The aluminium profiles are manufactured according to the medium EN 12020-2 standard


Straightness = 0,35 mm/m; Max. torsion = 0,35 mm/m; Angular torsion = 0,2 mm/40 mm; Parallelism = 0,2 mm

Standard version


- 1 Drive block with floating bearing (MTV 110 fixed bearing)
- 2 Corrosion-resistant protection strip
- 3 Ball screw tolerance ISO7 (ISO5 available on request)
- 4 Carriage; with built in Magnets
- 5 Aluminium profile-Hard anodized6 Integrated Linear Ball Guideway
- 7 Central lubrication port; both sides
- 8 End block with fixed bearing (MTV 110 floating bearing)
- 9 Screw support SA

2LR version

- 1 Carriage; with build in right hand ball nut
- 2 Right hand ball screw
- 3 Carriage; with build in left hand ball nut
- 4 Left hand ball screw
- 5 Central screw support fixed
- 6 Screw support SA

HOW TO ORDER

General technical data

Linear Unit	Carriage length	i Dynamic Load capacity	(i) Dy	ynamic mom	ent	For		oermissib	le loads Moments	5	* Max. length	* Max. stroke
	Lv [mm]	C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	M _{py} [Nm]	Mpz [Nm]	Lmax [mm]	[mm]
MTV 40	150	4620	28	260	260	2300	3850	23	210	130	2900	2728

Mz. Mpz

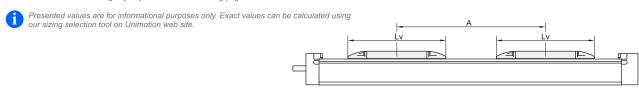
*For lengths / stroke over the stated value in the table above please contact us.

Values for max. stroke are not valid for multiple carriages and screw support SA
(equation of defining the linear unit length for particular size of the linear unit needs to be used).

Operating conditions

Operating temp. 0°C ~ +60°C

Duty cycle 100%


For operating temperature out of the presented range, please contact us.

Recommended values of loads: All the data of dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fs =5.0) Modulus of elasticity E = 70000 N / mm²

General technical data for double carriage

Linear Unit	Number of	Dynamic	*	Dynamic mon	nent	* Max. permissible loads				
	carriages	Load capacity				For	ces		Moments	
						Fpy	Fpz	Мрх	Мру	Mpz
		C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	[N]	[N]	[Nm]	[Nm]	[Nm]
MTV 40	2	9240	56	4,6 × A	4,6 × A	4600	7690	46	3,8 × A	2,3 × A

*A - Distance between carriages [mm]. More info on following pages.

Ball Screw Drive data

Linear Unit	Ball screw	³ Max. rotational speed	1 Max. travel speed	Lead constant	² Max. Repeatability precision [mm]		Dynamic load capacity BS	Max. axial load	Max. drive torque	⁴ Min. stroke	¹ Max. acceleration
	[d×l]	(Without SA) [rev / min]	(Without SA) [m / s]	[mm / rev]	STANDARD ISO7	ISO5	Ca [N]	Fx [N]	Ma [Nm]	[mm]	[m/s²]
MTV 40	12 × 5	5800	0,49	5	± 0,02	<u>+</u> 0,01	5000	3400	3,0	30	20
W I V 40	12 × 10	5600	0.97	10	± 0.02	± 0.01	3800	2540	4.5	30	20

¹ Max. travel speed depends of the length of the linear unit, see diagram for particular size of the linear unit. For travel speed and acceleration over the stated value in the table above or diagrams please contact us.

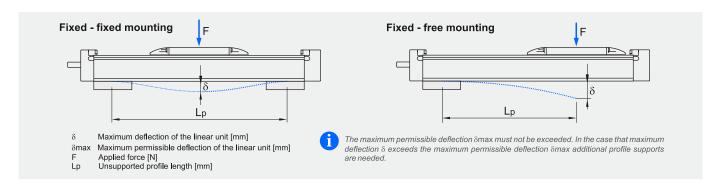
Planar moment of inertia

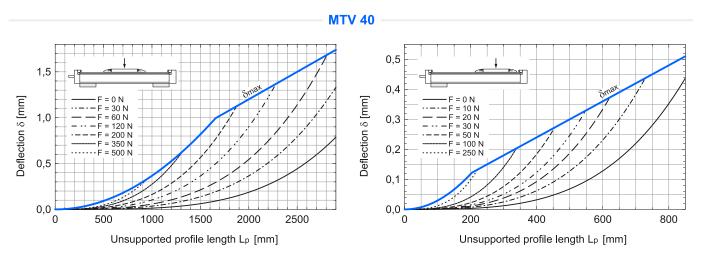
Linear Unit	Planar moment of inertia					
	ly [cm ⁴]	Iz [cm ⁴]				
MTV 40	10,0	11,0				

 $^{^{\}mathbf{2}}$ For the ball nut with the preload of 2%, please contact us.

³ With SA version the max. rotation speed is limited to 3000 rev / min.

⁴ For minimum stroke below the stated value in the table above please contact us.


Mass, moved mass, mass moment of inertia and no load torque


Linear Unit	Ball screw	Number of SA	* Mass of linear unit	* Moved mass
	[d×l]	n _{SA}	[kg]	[kg]
		0	1,2 + 0,0028 × (Abs. stroke + (nc - 1) × A) + 0,47 × (nc - 1)	0,47 + 0,47 × (nc - 1)
	12 × 5	2	1,3 + 0,0028 × (Abs. stroke + (nc - 1) × A) + 0,47 × (nc - 1)	0,50 + 0,47 × (nc - 1)
MTV		4	1,4 + 0,0028 × (Abs. stroke + (nc - 1) × A) + 0,47 × (nc - 1)	0,53 + 0,47 × (nc - 1)
40		0	1,2 + 0,0028 × (Abs. stroke + (nc - 1) × A) + 0,47 × (nc - 1)	0,47 + 0,47 × (nc - 1)
	12 × 10	2	1,3 + 0,0028 × (Abs. stroke + (nc - 1) × A) + 0,47 × (nc - 1)	0,50 + 0,47 × (nc - 1)
		4	1,4 + 0,0028 × (Abs. stroke + (nc - 1) × A) + 0,47 × (nc - 1)	0,53 + 0,47 × (nc - 1)

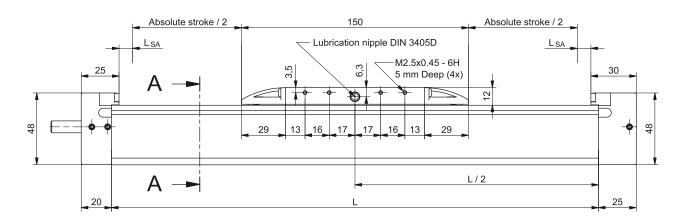
Linear Unit	Ball screw	Number of SA	* Mass moment of inertia	* ** No load torque
	[d×l]	n _{SA}	[10 ⁻⁵ kg m ²]	[Nm]
		0	0,48 + 0,0012 × (Abs. stroke + (nc - 1) × A) + 0,03 × (nc - 1)	0,08 + 0,08 × (nc - 1)
	12 × 5	2	0,53 + 0,0012 × (Abs. stroke + (nc - 1) × A) + 0,03 × (nc - 1)	0,09 + 0,08 × (nc - 1)
MTV		4	0,57 + 0,0012 × (Abs. stroke + (nc - 1) × A) + 0,03 × (nc - 1)	0,10 + 0,08 × (nc - 1)
40		0	$0.57 + 0.0012 \times (Abs. stroke + (nc - 1) \times A) + 0.12 \times (nc - 1)$	0,09 + 0,09 × (nc - 1)
	12 × 10	2	$0.62 + 0.0012 \times (Abs. stroke + (nc - 1) \times A) + 0.12 \times (nc - 1)$	0,11 + 0,09 × (nc - 1)
		4	$0.67 + 0.0012 \times (Abs. stroke + (nc - 1) \times A) + 0.12 \times (nc - 1)$	0,14 + 0,09 × (nc - 1)

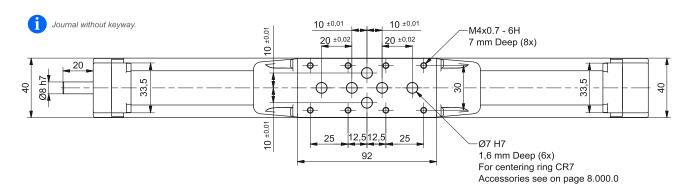
^{*}Absolute stroke [mm]

Deflection of the linear unit

A - Distance between carriages [mm]. More info on following pages.

nc - Number of carriages


^{**}The stated values are for strokes (and for distances between the carriages A) up to 500mm.

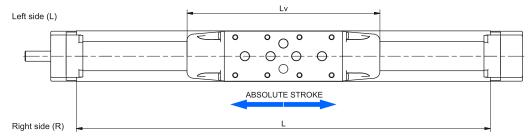

No Load Torque value increases with stroke (and with A) elongation.

Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.

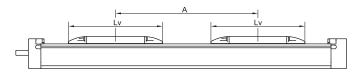
Linear Unit doesn't include any safety

Absolute stroke = Effective stroke + 2 x Safety stroke stroke.

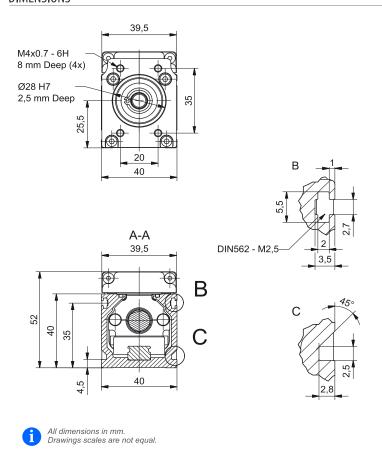
n_{SA}	L_{SA}
0	6,0
2SA	23,0
4SA	40,0

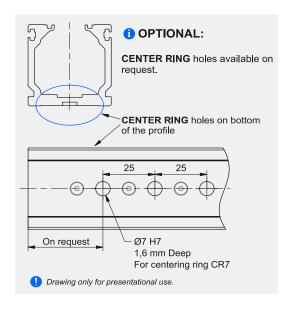

All dimensions in mm; Drawings scales are not equal.

L_{SA} Additional length [mm]


Defining of the linear unit length

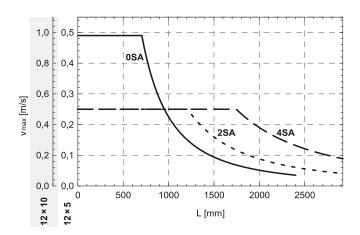
L = Effective stroke + 2 \times Safety stroke + Lv + 2 \times LsA + A \times (nc - 1) + 10 mm


Ltotal = L + 45 mm, Lv = 150 mm



Multiple carriages

nc - Number of carriages



Mounting the drive

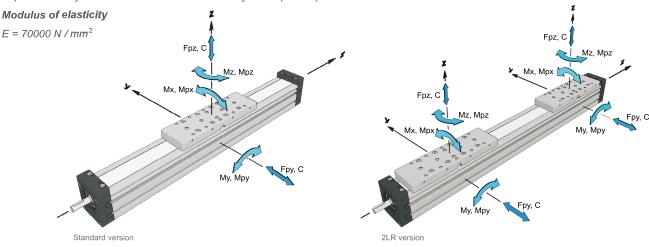
- by the MOTOR SIDE DRIVE MSD (Page 7.095.0)
- by the MOTOR ADAPTER WITH COUPLING (Page 8.020.0)
 - Available on request.

Maximum travel speed as a function of the profile length (Vmax - L curves)

General technical data

Linear Unit	Carriage length	i Dynamic Load capacity	① Dynamic moment			Max. permissible loads Forces Moments					* Max. length	* Max. stroke
	Lv [mm]	C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]	Lmax [mm]	[mm]
MTV 65	220	19800	158	700	700	6540	10190	94	350	233	2920	2690
MTV 65 2LR	220	19800	158	700	700	6540	10190	94	350	233	5789	2667

^{*}For lengths / stroke over the stated value in the table above please contact us.


Values for max. stroke are not valid for multiple carriages and screw support SA
(equation of defining the linear unit length for particular size of the linear unit needs to be used).

Operating temp. 0°C ~ +60°C Duty cycle

For operating temperature out of the presented range, please contact us.

Recommended values of loads:

All the data of dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We recommend a minimum safety factor (fs =5.0)

General technical data for double carriage

Linear Unit	Number of	Dynamic	*	Dynamic mon	nent	*	Ma	x. permissible	e loads	
	carriages	Load capacity				For	ces		Moments	
		C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]
TV 65 / MTV 65 2LR	2	39600	316	19,8 × A	19,8 × A	13070	20380	188	10,2 × A	6,5 × A
- Distance between ca	arriages [mm].	More info on follo	owing pages.			-	Α			
Presented values a	are for informa n tool on Unim	tional purposes o otion web site.	nly. Exact value	es can be calcula	ated using	Lv		-	Lv	
our sizing selection										

Ball Screw Drive data

Linear Unit	Ball screw			¹ Max. Lead travel speed constant		Max. Repeatability precision [mm]		⁵ Max. axial load	Max. drive torque	⁴ Min. stroke	Max. acceleration
	[d×l]	(Without SA) [rev / min]	(Without SA) [m / s]	[mm / rev]	STANDARD ISO7	ISO5	Ca [N]	Fx [N]	Ma [Nm]	[mm]	[m/s ²]
	16 × 5		0,35	5	± 0,02	± 0,01	13150	8700	5,5 with Keyway 7,7 without Keyway		
MTV 65 MTV 65 2LR	16 × 10	4200	0,70	10	± 0,02	± 0,01	11550	6730	5,5 with Keyway	40	20
	16 × 16			16	± 0,02	± 0,01	8170	4200	11,9 without Keyway		

¹ Max, travel speed depends of the length of the linear unit, see diagram for particular size of the linear unit. For travel speed and acceleration over the stated value in the table above or diagrams please contact us.

 $^{^{\}mathbf{2}}$ For the ball nut with the preload of 2%, please contact us.

 $^{^{3}}$ With SA or 2LR version the max. rotation speed is limited to 3000 rev / min.

⁴ For minimum stroke below the stated value in the table above please contact us.

⁵ In the case of 2RL version the axial load is total axial load of both carriages.

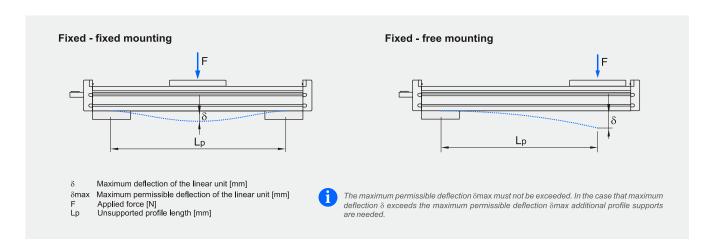
Mass, moved mass, mass moment of inertia and no load torque

Linear Unit	Ball screw	Number of SA	* Mass of linear unit	* Moved mass
	[d×l]	n _{SA}	[kg]	[kg]
	16 × 5	0	$4.0 + 0.0073 \times (Abs. stroke + (nc - 1) \times A) + 1.5 \times (nc - 1)$	1,50 + 1,50 × (nc - 1)
		2	$4.5 + 0.0073 \times (Abs. stroke + (nc - 1) \times A) + 1.5 \times (nc - 1)$	1,58 + 1,50 × (nc - 1)
		4	$5.0 + 0.0073 \times (Abs. stroke + (nc - 1) \times A) + 1.5 \times (nc - 1)$	1,66 + 1,50 × (nc - 1)
	16 × 5	0	$7.2 + 0.0146 \times (Abs. stroke + (nc - 1) \times A) + 3.0 \times (nc - 1)$	3,00 + 3,00 × (nc - 1)
	2LR version	2	$8,2 + 0,0146 \times (Abs. stroke + (nc - 1) \times A) + 3,0 \times (nc - 1)$	3,16 + 3,00 × (nc - 1)
	ZLIX VEISION	4	$9.2 + 0.0146 \times (Abs. stroke + (nc - 1) \times A) + 3.0 \times (nc - 1)$	3,32 + 3,00 × (nc - 1)
	16 × 10	0	4,0 + 0,0073 × (Abs. stroke + (nc - 1) × A) + 1,5 × (nc - 1)	1,50 + 1,50 × (nc - 1)
MTV 65		2	$4.5 + 0.0073 \times (Abs. stroke + (nc - 1) \times A) + 1.5 \times (nc - 1)$	1,58 + 1,50 × (nc - 1)
65		4	$5.0 + 0.0073 \times (Abs. stroke + (nc - 1) \times A) + 1.5 \times (nc - 1)$	1,66 + 1,50 × (nc - 1)
		0	$7.2 + 0.0146 \times (Abs. stroke + (nc - 1) \times A) + 3.0 \times (nc - 1)$	3,00 + 3,00 × (nc - 1)
	16 × 10 2LR version	2	$8,2 + 0,0146 \times (Abs. stroke + (nc - 1) \times A) + 3,0 \times (nc - 1)$	3,16 + 3,00 × (nc - 1)
	ZEIX VOISION	4	$9.2 + 0.0146 \times (Abs. stroke + (nc - 1) \times A) + 3.0 \times (nc - 1)$	3,32 + 3,00 × (nc - 1)
		0	4,0 + 0,0073 × (Abs. stroke + (nc - 1) × A) + 1,5 × (nc - 1)	1,50 + 1,50 × (nc - 1)
	16 × 16	2	$4.5 + 0.0073 \times (Abs. stroke + (nc - 1) \times A) + 1.5 \times (nc - 1)$	1,58 + 1,50 × (nc - 1)
	.5 10	4	5,0 + 0,0073 × (Abs. stroke + (nc - 1) × A) + 1,5 × (nc - 1)	1,66 + 1,50 × (nc - 1)

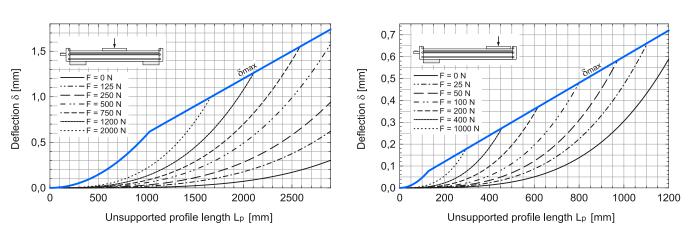
Linear Unit	Ball screw	Number of SA	* Mass moment of inertia	* ** No load torque
O.m.c	[d×l]	n _{SA}	[10 ⁻⁵ kg m ²]	[Nm]
		0	1,6 + 0,0052 × (Abs. stroke + (nc - 1) × A) + 0,09 × (nc - 1)	0,14 + 0,14 × (nc - 1)
	16 × 5	2	$1.9 + 0.0052 \times (Abs. stroke + (nc - 1) \times A) + 0.09 \times (nc - 1)$	0,16 + 0,14 × (nc - 1)
		4	$2.2 + 0.0052 \times (Abs. stroke + (nc - 1) \times A) + 0.09 \times (nc - 1)$	0,18 + 0,14 × (nc - 1)
	16 × 5	0	$2.9 + 0.0104 \times (Abs. stroke + (nc - 1) \times A) + 0.19 \times (nc - 1)$	0,28 + 0,28 × (nc - 1)
	2LR version	2	3,5 + 0,0104 × (Abs. stroke + (nc - 1) × A) + 0,19 × (nc - 1)	0,32 + 0,28 × (nc - 1)
	2211 10101011	4	4,1 + 0,0104 × (Abs. stroke + (nc - 1) × A) + 0,19 × (nc - 1)	0,35 + 0,28 × (nc - 1)
	16 × 10	0	1,9 + 0,0052 × (Abs. stroke + (nc - 1) × A) + 0,38 × (nc - 1)	0,15 + 0,15 × (nc - 1)
MTV 65		2	2,2 + 0,0052 × (Abs. stroke + (nc - 1) × A) + 0,38 × (nc - 1)	0,19 + 0,15 × (nc - 1)
05		4	2,5 + 0,0052 × (Abs. stroke + (nc - 1) × A) + 0,38 × (nc - 1)	0,22 + 0,15 × (nc - 1)
		0	$3.5 + 0.0104 \times (Abs. stroke + (nc - 1) \times A) + 0.76 \times (nc - 1)$	0,30 + 0,30 × (nc - 1)
	16 × 10 2LR version	2	4,1 + 0,0104 × (Abs. stroke + (nc - 1) × A) + 0,76 × (nc - 1)	0,34 + 0,30 × (nc - 1)
	ZZIV VOIOIOII	4	4,8 + 0,0104 × (Abs. stroke + (nc - 1) × A) + 0,76 × (nc - 1)	0,37 + 0,30 × (nc - 1)
		0	$2.5 + 0.0052 \times (Abs. stroke + (nc - 1) \times A) + 0.97 \times (nc - 1)$	0,20 + 0,20 × (nc - 1)
	16 × 16	2	$2.8 + 0.0052 \times (Abs. stroke + (nc - 1) \times A) + 0.97 \times (nc - 1)$	0,26 + 0,20 × (nc - 1)
		4	$3.2 + 0.0052 \times (Abs. stroke + (nc - 1) \times A) + 0.97 \times (nc - 1)$	0,31 + 0,20 × (nc - 1)

^{*}Absolute stroke [mm]

Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.


Planar moment of inertia

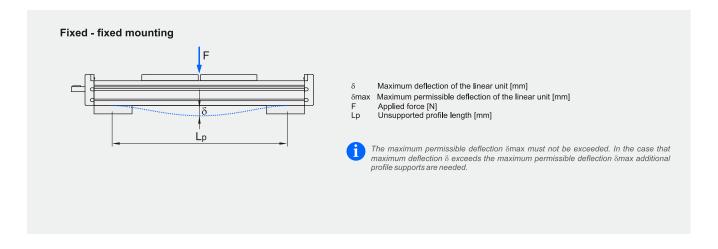
Linear Unit	Planar m ine	oment of rtia					
	ly [cm ⁴] lz [cm ⁴]						
MTV 65 MTV 65 2LR	71,3	89,4					


A - Distance between carriages [mm]. More info on following pages. nc - Number of carriages

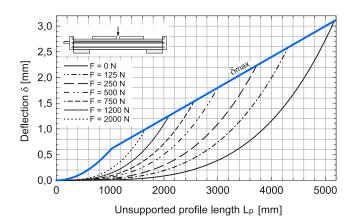
^{**}The stated values are for strokes (and for distances between the carriages A) up to 500mm. No Load Torque value increases with stroke (and with A) elongation.

Deflection of the linear unit

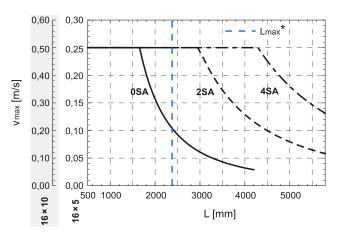
MTV 65



Maximum travel speed as a function of the profile length (Vmax - L curves)


MTV 65

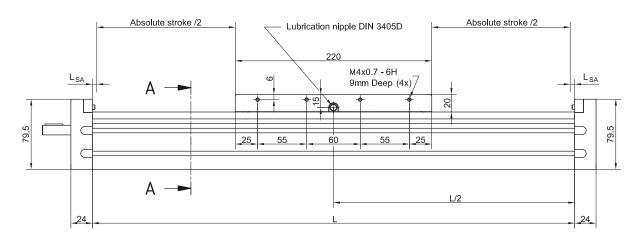
Deflection of the 2LR version

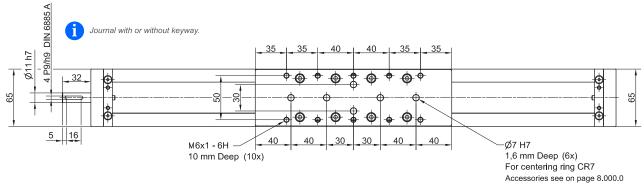


MTV 65 2LR

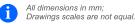
Maximum travel speed as a function of the profile length (Vmax - L curves)

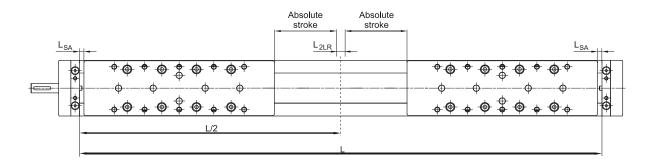
MTV 65 2LR




^{*} Max. length Lmax of MTV 65 2LR linear unit with 16x10 ball screw.

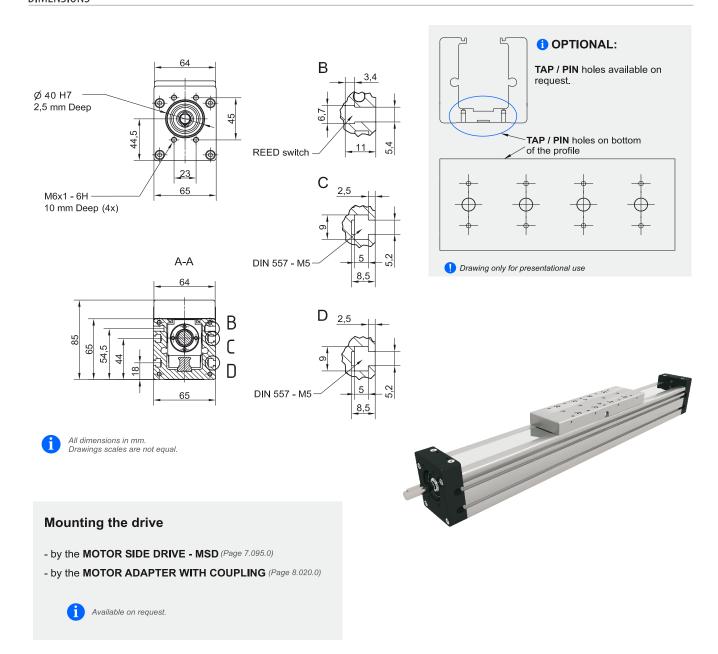
Linear Unit doesn't include any safety


Absolute stroke = Effective stroke + 2 x Safety stroke stroke.



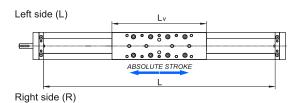
n	L_SA
0	5,0
2SA	31,0
4SA	62,0

L_{SA} Additional length [mm]


2LR version

n	L_SA	L_{2LR}
0	5,0	5,0
2SA	31,0	67,0
4SA	62,0	129,0

L_{SA} Additional length [mm]


L_{2LR} Min. distance between carriages [mm]

Defining of the linear unit length

1 Standard version

Ltotal = L + 48 mm, Lv = 220 mm

Multiple carriages

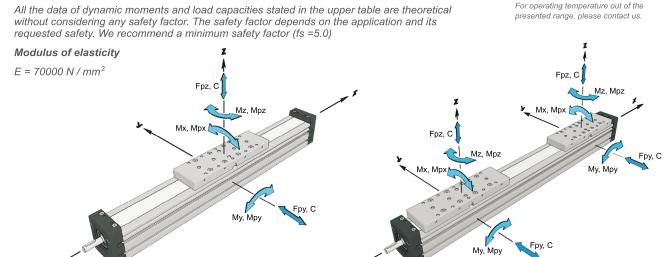
Connection between the carriages must be provided by the customer

nc - Number of carriages

1 Version 2LR L = Effective stroke + 2 × Safety stroke + Lv + 2 × LsA + A × (nc - 1) L = 2 × (Effective stroke + 2 × Safety stroke) + 2 × Lv + 2 × LsA + LzLR + A × (nc - 1) Ltotal = L + 48 mm, Lv = 220 mm Left side (L) . ABSOLUTE STROKE ABSOLUTE STROKE Right side (R) **Multiple carriages** Connection between the carriages must be provided by the customer

nc - Number of carriages

General technical data


Recommended values of loads:

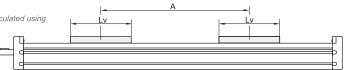
Linear Unit	Carriage length	Dynamic Load capacity	Dynamic moment		Max. permissible loads Forces Moments					* Max. length	* Max. stroke	
	Lv [mm]	C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]	Lmax [mm]	[mm]
MTV 80	290	34200	370	1470	1470	8930	15070	150	500	384	5480	5163
MTV 80 2LR	290	34200	370	1470	1470	8930	15070	150	500	384	11055	5224

^{*}For lengths / stroke over the stated value in the table above please contact us. Values for max. stroke are not valid for multiple carriages and screw support SA (equation of defining the linear unit length for particular size of the linear unit needs to be used).

Operating conditions Operating temp. 0°C ~ +60°C Duty cycle

For operating temperature out of the presented range, please contact us.

General technical data for double carriage


Standard version

Linear Unit	Number of	Dynamic	* Dynamic moment *			* Max. permissible loads					
	carriages	Load capacity				For	ces		Moments		
						Fpy	Fpz	Мрх	Мру	Mpz	
		C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	[N]	[N]	[Nm]	[Nm]	[Nm]	
MTV 80 / MTV 80 2LR	2	68400	740	34,2 × A	34,2 × A	17860	30130	300	15,0 × A	8,9 × A	

2LR version

*A - Distance between carriages [mm]. More info on following pages.

Presented values are for informational purposes only. Exact values can be calculated using our sizing selection tool on Unimotion web site.

Ball Screw Drive data

Linear Unit	Ball screw	³ Max. rotational speed	¹ Max. travel speed	Lead constant	² Max. Repeatability precision [mm]		Dynamic Ioad capacity BS	⁵ Max. axial load	Max. drive torque	⁴ Min. stroke	Max. acceleration
	[d × l]	(Without SA) [rev / min]	(Without SA) [m / s]	[mm / rev]	STANDARD ISO7	ISO5	Ca [N]	Fx [N]	Ma [Nm]	[mm]	[m/s²]
MTV 80	20 × 5	2200	0,28	5	<u>+</u> 0,02	± 0,01	14800	14800	11,9 with Keyway 13,0 without Keyway		
MTV 80 2LR		3300	0,55	10	<u>+</u> 0,02	± 0,01	15900	13850	11,9	55	20
	20 × 20		1,10	20	± 0,02	± 0,01	16250	6930	with Keyway 24,5		
	20 × 50	3000	2,50	50	± 0,02	± 0,01	13000	2770	without Keyway		

¹ Max. travel speed depends of the length of the linear unit, see diagram for particular size of the linear unit. For travel speed and acceleration over the stated value in the table above or diagrams please contact us.

² For the ball nut with the preload of 2%, please contact us.

 $^{^{\}rm 3}$ With SA or 2LR version the max. rotation speed is limited to 3000 rev / min.

⁴ For minimum stroke below the stated value in the table above please contact us.

⁵ In the case of 2RL version the axial load is total axial load of both carriages.

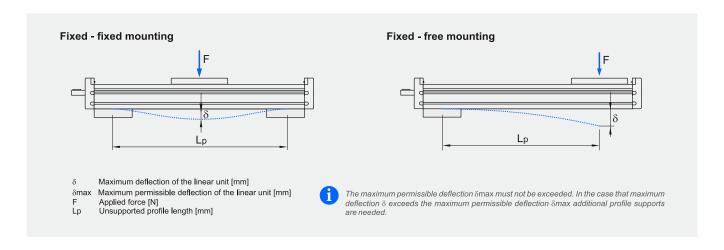
Mass, moved mass, mass moment of inertia and no load torque

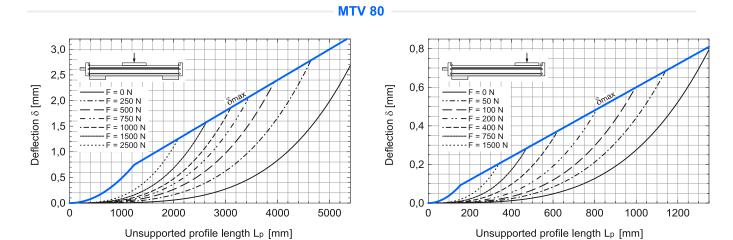
Linear Unit	Ball screw	Number of SA	* Mass of linear unit	* Moved mass
	[d×l]	n _{SA}	[kg]	[kg]
		0	8,2 + 0,0114 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,00 + 3,00 × (nc - 1)
	20 × 5	2	8,9 + 0,0114 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,07 + 3,00 × (nc - 1)
		4/6/8/10	9,7 + 0,4 * (n _{SA} - 4) + 0,0114 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,21 + 0,035 * (n _{SA} - 4) + 3,00 × (nc - 1)
		0	14,6 + 0,0228 × (Abs. stroke + (nc - 1) × A) + 6,0 × (nc - 1)	6,00 + 6,00 × (nc - 1)
	20 × 5 2LR version	2	15,9 + 0,0228 × (Abs. stroke + (nc - 1) × A) + 6,0 × (nc - 1)	6,14 + 6,00 × (nc - 1)
	ZER VOISION	4/6/8/10	17,6 + 0,8 * (n _{SA} - 4) + 0,0228 × (Abs. stroke + (nc - 1) × A) + 6,0 × (nc - 1)	6,42 + 0,07 * (n _{SA} - 4) + 6,00 × (nc - 1)
		0	$8,2 + 0,0114 \times (Abs. stroke + (nc - 1) \times A) + 3,0 \times (nc - 1)$	3,00 + 3,00 × (nc - 1)
MTV	20 × 10	2	8,9 + 0,0114 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,07 + 3,00 × (nc - 1)
80		4/6/8/10	9,7 + 0,4 * (n_{SA} - 4) + 0,0114 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,21 + 0,035 * (n _{SA} - 4) + 3,00 × (nc - 1)
		0	$8,2 + 0,0114 \times (Abs. stroke + (nc - 1) \times A) + 3,0 \times (nc - 1)$	3,00 + 3,00 × (nc - 1)
	20 × 20	2	8,9 + 0,0114 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,07 + 3,00 × (nc - 1)
		4/6/8/10	$9.7 + 0.4 * (n_{SA} - 4) + 0.0114 * (Abs. stroke + (nc - 1) * A) + 3.0 * (nc - 1)$	3,21 + 0,035 * (n _{SA} - 4) + 3,00 × (nc - 1)
		0	$8,2 + 0,0114 \times (Abs. stroke + (nc - 1) \times A) + 3,0 \times (nc - 1)$	3,00 + 3,00 × (nc - 1)
	20 × 50	2	8,9 + 0,0114 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,07 + 3,00 × (nc - 1)
		4/6/8/10	9,7 + 0,4 * (n_{SA} - 4) + 0,0114 × (Abs. stroke + (nc - 1) × A) + 3,0 × (nc - 1)	3,21 + 0,035 * (n _{SA} - 4) + 3,00 × (nc - 1)

Linear Unit	Ball screw	Number of SA	* Mass moment of inertia	* ** No load torque
01.110	[d×l]	n _{SA}	[10 ⁻⁵ kg m ²]	[Nm]
		0	5,6 + 0,0127 × (Abs. stroke + (nc - 1) × A) + 0,19 × (nc - 1)	0,23 + 0,23 × (nc - 1)
	20 × 5	2	6,2 + 0,0127 × (Abs. stroke + (nc - 1) × A) + 0,19 × (nc - 1)	0,26 + 0,23 × (nc - 1)
		4/6/8/10	$7.0 + 0.4 * (n_{SA} - 4) + 0.0127 * (Abs. stroke + (nc - 1) * A) + 0.19 * (nc - 1)$	0,31 + 0,015 * (n _{SA} - 4) + 0,23 × (nc - 1)
		0	9,5 + 0,0254 × (Abs. stroke + (nc - 1) × A) + 0,38 × (nc - 1)	0,46 + 0,46 × (nc - 1)
	20 × 5 2LR version	2	10,7 + 0,0254 × (Abs. stroke + (nc - 1) × A) + 0,38 × (nc - 1)	0,51 + 0,46 × (nc - 1)
	2211 10101011	4/6/8/10	12,3 + 0,8 * (n _{SA} - 4) + 0,0254 × (Abs. stroke + (nc - 1) × A) + 0,38 × (nc - 1)	$0.62 + 0.03 * (n_{SA} - 4) + 0.46 * (nc - 1)$
		0	$6.2 + 0.0127 \times (Abs. stroke + (nc - 1) \times A) + 0.76 \times (nc - 1)$	0,25 + 0,25 × (nc - 1)
MTV 80	20 × 10	2	$6.8 + 0.0127 \times (Abs. stroke + (nc - 1) \times A) + 0.76 \times (nc - 1)$	$0.30 + 0.25 \times (nc - 1)$
00		4/6/8/10	7,6 + 0,4 * (n_{SA} - 4) + 0,0127 × (Abs. stroke + (nc - 1) × A) + 0,76 × (nc - 1)	0,41 + 0,025 * (n _{SA} - 4) + 0,25 × (nc - 1)
		0	$8.5 + 0.0127 \times (Abs. stroke + (nc - 1) \times A) + 3.04 \times (nc - 1)$	0,30 + 0,30 × (nc - 1)
	20 × 20	2	$9.1 + 0.0127 \times (Abs. stroke + (nc - 1) \times A) + 3.04 \times (nc - 1)$	0,41 + 0,30 × (nc - 1)
		4/6/8/10	10,1 + 0,5 * (n_{SA} - 4) + 0,0127 × (Abs. stroke + (nc - 1) × A) + 3,04 × (nc - 1)	0,62 + 0,055 * (n _{SA} - 4) + 0,30 × (nc - 1)
		0	24,4 + 0,0127 × (Abs. stroke + (nc - 1) × A) + 19,00 × (nc - 1)	0,70 + 0,70 × (nc - 1)
	20 × 50	2	25,5 + 0,0127 × (Abs. stroke + (nc - 1) × A) + 19,00 × (nc - 1)	0,97 + 0,70 × (nc - 1)
		4/6/8/10	$27.1 + 0.6 * (n_{SA} - 4) + 0.0127 \times (Abs. stroke + (nc - 1) \times A) + 19.00 \times (nc - 1)$	$1,50 + 0,135 * (n_{SA} - 4) + 0,70 * (nc - 1)$

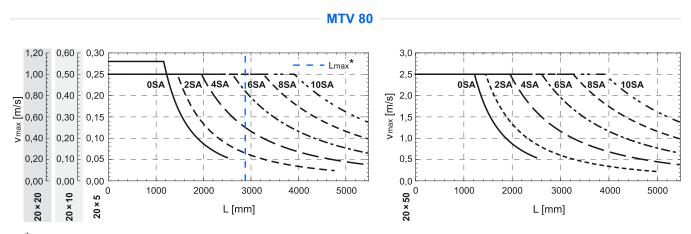
*Absolute stroke [mm]
A - Distance between carriages [mm]. More info on following pages.
nc - Number of carriages

Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.

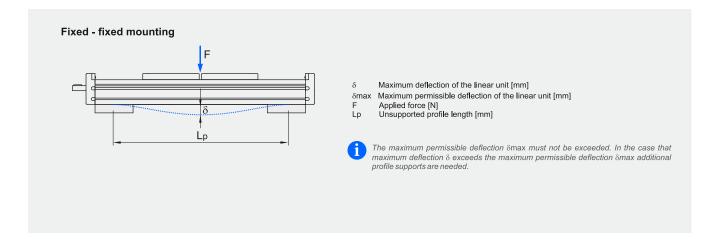

Planar moment of inertia


Linear Unit	Planar m ine	oment of rtia					
	ly [cm ⁴] lz [cm ⁴]						
MTV 80 MTV 80 2LR	144,1	192,3					

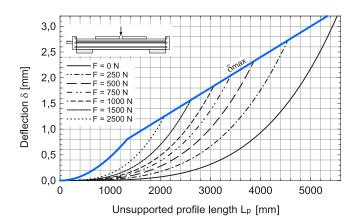
^{**}The stated values are for strokes (and for distances between the carriages A) up to 500mm.


No Load Torque value increases with stroke (and with A) elongation.

Deflection of the linear unit

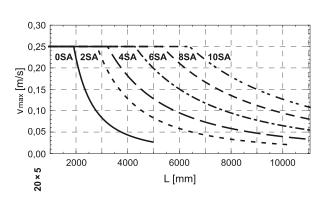


Maximum travel speed as a function of the profile length (Vmax - L curves)



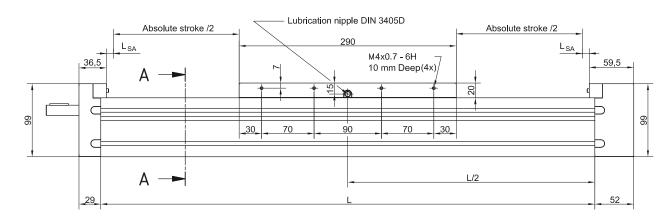
^{*} Max. length Lmax of MTV 80 linear unit with 20x10 ball screw.

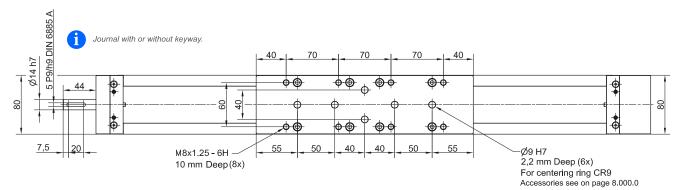
Deflection of the 2LR version



MTV 80 2LR

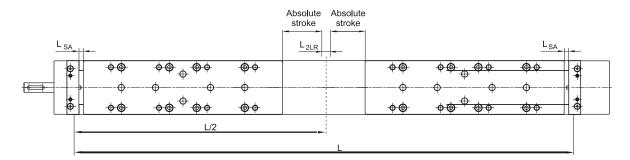
Maximum travel speed as a function of the profile length (Vmax - L curves)


MTV 80 2LR



i Linear Unit doesn't include any safety

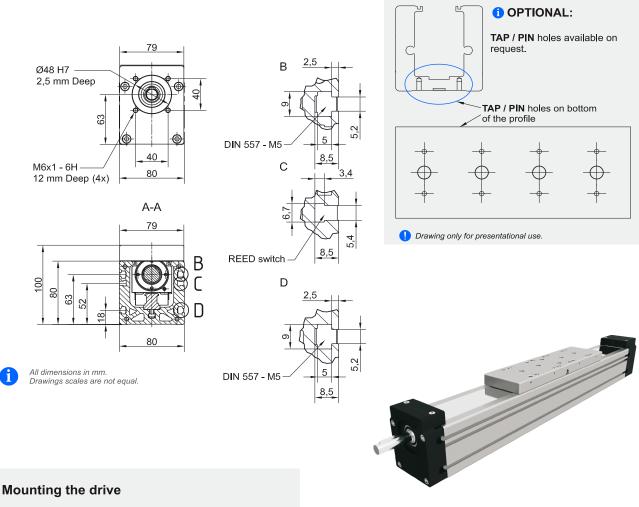
Absolute stroke = Effective stroke + 2 x Safety stroke stroke.



n _{sa}	L_SA
0	6,0
2SA	28,5
4SA	59,5
6SA	90,5
8SA	121,5
10SA	152,5

L_{SA} Additional length [mm]

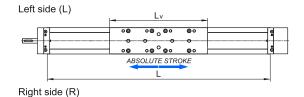
All dimensions in mm; Drawings scales are not equal.


2LR Version

n_{SA}	L_SA	$L_{\rm 2LR}$
0	6,0	0,0
2SA	28,5	48,0
4SA	59,5	110,0
6SA	90,5	172,0
8SA	121,5	234,0
10SA	152,5	296,0

L_{SA} Additional length [mm]

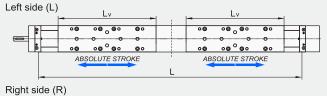
 ${\sf L}_{\sf 2LR}$ Min. distance between carriages [mm]


- by the MOTOR SIDE DRIVE MSD (Page 7.095.0)
- by the MOTOR ADAPTER WITH COUPLING (Page 8.020.0)

Defining of the linear unit length

1 Standard version

Ltotal = L + 81 mm, Lv = 290 mm


Multiple carriages

Connection between the carriages $A \ge Lv$ must be provided by the customer

nc - Number of carriages

1 2LR version

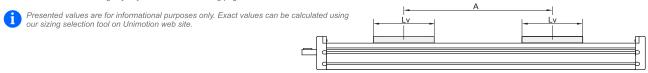
L = Effective stroke + 2 × Safety stroke + Lv + 2 × LsA + A × (nc - 1) + 15 mm L = 2 × (Effective stroke + 2 × Safety stroke) + 2 × Lv + 2 × LsA + L2LR + A × (nc - 1) + 15 mm Ltotal = L + 81 mm, Lv = 290 mm

Multiple carriages

Connection between the carriages must be provided by the customer

nc - Number of carriages

General technical data


Linear Unit	Carriage length	i Dynamic Load capacity	(i) D)	ynamic mom	ent	For	Max. permissible loads Forces Moments			* Max. length	* Max. stroke	
	Lv [mm]	C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	Fpy [N]	Fpz [N]	Mpx [Nm]	Mpy [Nm]	Mpz [Nm]	Lmax [mm]	[mm]
MTV 110	330	49600	630	2650	2650	10000	20260	295	670	535	5850	5456

 $^{f *}$ For lengths / stroke over the stated value in the table above please contact us. Values for max. stroke are not valid for multiple carriages and screw support SA (equation of defining the linear unit length for particular size of the linear unit needs to be used). Operating temp. 0°C ~ +60°C Duty cycle 100% Recommended values of loads: For operating temperature out of the presented range, please contact us. All the data of dynamic moments and load capacities stated in the upper table are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety. We Mz. Mpz recommend a minimum safety factor (fs =5.0) Modulus of elasticity $E = 70000 N / mm^2$

General technical data for double carriage

Linear Unit	Number of	Dynamic	* Dynamic moment			* Max. permissible loads				
	carriages	Load capacity				For	ces		Moments	
						Fpy	Fpz	Мрх	Мру	Mpz
		C[N]	Mx [Nm]	My [Nm]	Mz [Nm]	[N]	[N]	[Nm]	[Nm]	[Nm]
MTV 110	2	99200	1260	49,6 × A	49,6 × A	20000	40500	590	20,3 × A	10,0 × A

*A - Distance between carriages [mm]. More info on following pages.

Ball Screw Drive data

Linear Unit	Ball screw	³ Max. rotational speed	¹ Max. travel speed	Lead constant	prec	eatability ision im]	Dynamic Ioad capacity BS	Max, axial load	Max. drive torque	⁴ Min. stroke	¹ Max. acceleration
	[d×l]	(Without SA) [rev / min]	(Without SA) [m / s]	[mm / rev]	STANDARD ISO7	ISO5	Ca [N]	Fx [N]	Ma [Nm]	[mm]	[m/s²]
MTV 110	32 × 5	2150	0,18	5	± 0,02	± 0,01	18850	18850	16,7 with Keyway 16,7 without Keyway	65	
	32 × 10	3000	0,50	10	± 0,02	± 0,01	37000	29600	27,3	65	20
	32 × 20		1,00	20	± 0,02	± 0,01	22950	14800	with Keyway 52,3		
	32 × 32		1,60	32	± 0,02	± 0,01	15500	9240	without Keyway	70	

¹ Max. travel speed depends of the length of the linear unit, see diagram for particular size of the linear unit. For travel speed and acceleration over the stated value in the table above or diagrams please contact us.

Planar moment of inertia

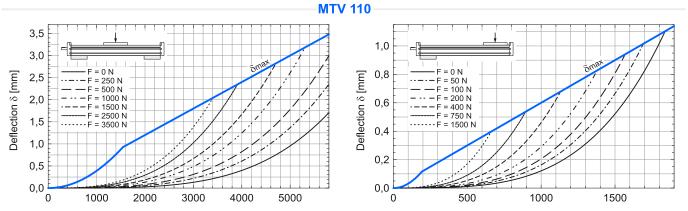
Linear Unit	Planar moment of inertia				
	ly [cm ⁴]	lz [cm ⁴]			
MTV 110	562,0	669,0			

² For the ball nut with the preload of 2%, please contact us.

³ With SA the max. rotation speed is limited to 3000 rev / min.

⁴ For minimum stroke below the stated value in the table above please contact us.

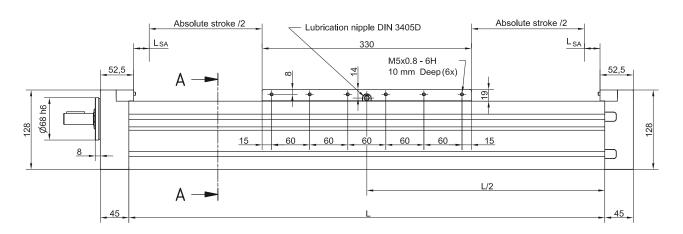

Mass, moved mass, mass moment of inertia and no load torque

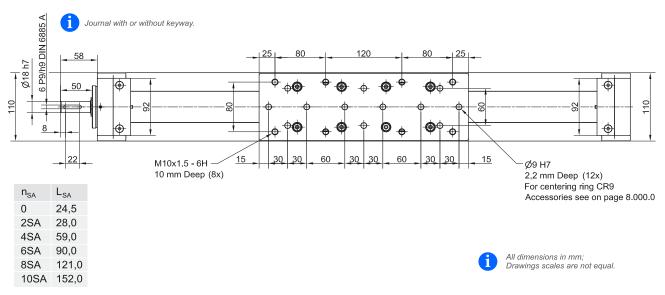

Linear	Ball screw	Number of SA	* Mass of linear unit	* Moved mass
Unit	[d×l]	n _{SA}	[kg]	[kg]
MTV	32 × 5	0	17,3 + 0,0216 × (Abs. stroke + (nc - 1) × A) + 4,9 × (nc - 1)	4,90 + 4,90 × (nc - 1)
		2	17,7 + 0,0216 × (Abs. stroke + (nc - 1) × A) + 4,9 × (nc - 1)	5,03 + 4,90 × (nc - 1)
		4/6/8/10	19,3 + 0,8 * (n_{SA} - 4) + 0,0216 × (Abs. stroke + (nc - 1) × A) + 4,9 × (nc - 1)	5,29 + 0,065 * (n _{SA} - 4) + 4,90 × (nc - 1)
	32 × 10	0	$17.3 + 0.0216 \times (Abs. stroke + (nc - 1) \times A) + 4.9 \times (nc - 1)$	4,90 + 4,90 × (nc - 1)
		2	$17.7 + 0.0216 \times (Abs. stroke + (nc - 1) \times A) + 4.9 \times (nc - 1)$	5,03 + 4,90 × (nc - 1)
		4/6/8/10	19,3 + 0,8 * (n_{SA} - 4) + 0,0216 × (Abs. stroke + (nc - 1) × A) + 4,9 × (nc - 1)	5,29 + 0,065 * (n _{SA} - 4) + 4,90 × (nc - 1)
110	32 × 20	0	$17.3 + 0.0216 \times (Abs. stroke + (nc - 1) \times A) + 4.9 \times (nc - 1)$	4,90 + 4,90 × (nc - 1)
		2	17,7 + 0,0216 × (Abs. stroke + (nc - 1) × A) + 4,9 × (nc - 1)	5,03 + 4,90 × (nc - 1)
		4/6/8/10	19,3 + 0,8 * (n_{SA} - 4) + 0,0216 × (Abs. stroke + (nc - 1) × A) + 4,9 × (nc - 1)	5,29 + 0,065 * (n _{SA} - 4) + 4,90 × (nc - 1)
	32 × 32	0	17,3 + 0,0216 × (Abs. stroke + (nc - 1) × A) + 4,9 × (nc - 1)	4,90 + 4,90 × (nc - 1)
		2	$17.7 + 0.0216 \times (Abs. stroke + (nc - 1) \times A) + 4.9 \times (nc - 1)$	5,03 + 4,90 × (nc - 1)
		4/6/8/10	19,3 + 0,8 * (n _{SA} - 4) + 0,0216 × (Abs. stroke + (nc - 1) × A) + 4,9 × (nc - 1)	5,29 + 0,065 * (n _{SA} - 4) + 4,90 × (nc - 1)

Linear Unit	Ball screw [d × l]	Number of SA n _{SA}	* Mass moment of inertia [10 ⁻⁵ kg m ²]	* ** No load torque [Nm]
MTV	32 × 5	0	34,6 + 0,0690 × (Abs. stroke + (nc - 1) × A) + 0,31 × (nc - 1)	0,60 + 0,60 × (nc - 1)
		2	35,1 + 0,0690 × (Abs. stroke + (nc - 1) × A) + 0,31 × (nc - 1)	0,67 + 0,60 × (nc - 1)
		4/6/8/10	39,4 + 2,2 * (n _{SA} - 4) + 0,0690 × (Abs. stroke + (nc - 1) × A) + 0,31 × (nc - 1)	0,81 + 0,035 * (n _{SA} - 4) + 0,60 × (nc - 1)
	32 × 10	0	35,5 + 0,0690 × (Abs. stroke + (nc - 1) × A) + 1,24 × (nc - 1)	0,70 + 0,70 × (nc - 1)
		2	36,1 + 0,0690 × (Abs. stroke + (nc - 1) × A) + 1,24 × (nc - 1)	0,84 + 0,70 × (nc - 1)
		4/6/8/10	$40.4 + 2.2 * (n_{SA} - 4) + 0.0690 \times (Abs. stroke + (nc - 1) \times A) + 1.24 \times (nc - 1)$	1,12 + 0,070 * (n _{SA} - 4) + 0,70 × (nc - 1)
110	32 × 20	0	39,3 + 0,0690 × (Abs. stroke + (nc - 1) × A) + 4,96 × (nc - 1)	0,75 + 0,75 × (nc - 1)
		2	39,9 + 0,0690 × (Abs. stroke + (nc - 1) × A) + 4,96 × (nc - 1)	1,03 + 0,75 × (nc - 1)
		4/6/8/10	44,4 + 2,2 * (n _{SA} - 4) + 0,0690 × (Abs. stroke + (nc - 1) × A) + 4,96 × (nc - 1)	1,60 + 0,140 * (n _{SA} - 4) + 0,75 × (nc - 1)
	32 × 32	0	47,0 + 0,0690 × (Abs. stroke + (nc - 1) × A) + 12,71 × (nc - 1)	0,80 + 0,80 × (nc - 1)
		2	47,8 + 0,0690 × (Abs. stroke + (nc - 1) × A) + 12,71 × (nc - 1)	1,25 + 0,80 × (nc - 1)
		4/6/8/10	52,8 + 2,3 * (n _{SA} - 4) + 0,0690 × (Abs. stroke + (nc - 1) × A) + 12,71 × (nc - 1)	2,16 + 0,225 * (n _{SA} - 4) + 0,80 × (nc - 1)

^{*}Absolute stroke [mm]

Deflection of the linear unit

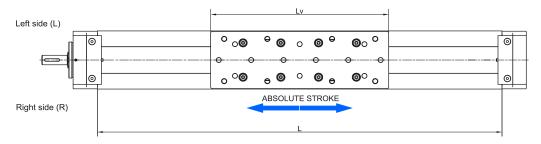

Mass calculation doesn't include mass of motor, reduction gear, switches and clamps.


A - Distance between carriages [mm]. More info on following pages. nc - Number of carriages

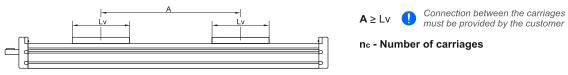
^{**}The stated values are for strokes (and for distances between the carriages A) up to 500mm. No Load Torque value increases with stroke (and with A) elongation.

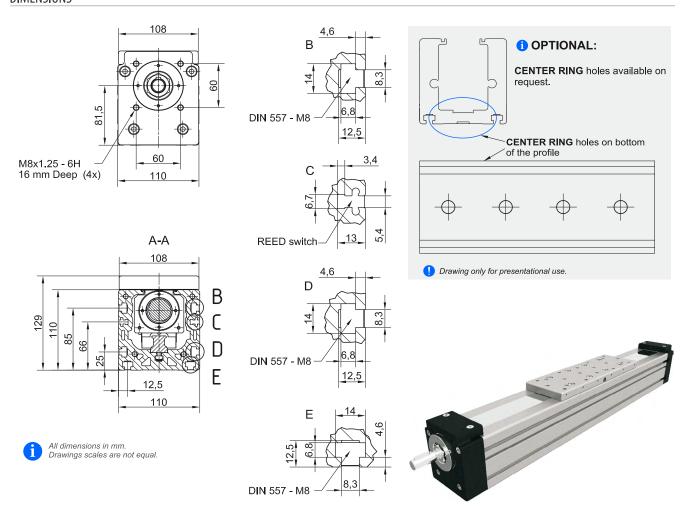
Linear Unit doesn't include any safety

Absolute stroke = Effective stroke + 2 x Safety stroke stroke.



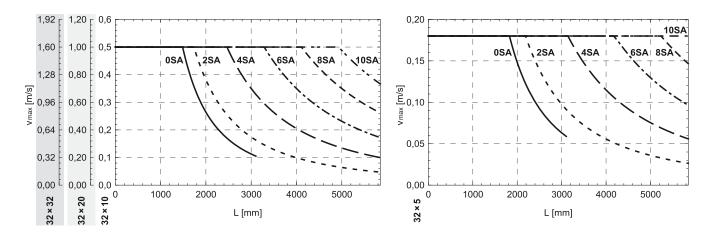
L_{SA} Additional length [mm]


Defining of the linear unit length


L = Effective stroke + 2 × Safety stroke + Lv + 2 × LsA + A × (nc - 1) + 15 mm

Ltotal = L + 90 mm, Lv = 330 mm

Multiple carriages



Mounting the drive

- by the MOTOR SIDE DRIVE MSD (Page 7.095.0)
- by the MOTOR ADAPTER WITH COUPLING (Page 8.020.0)

Available on request.

Maximum travel speed as a function of the profile length (Vmax - L curves)

