CHARACTERISTICS

The MGTB is a toothed belt driven mini linear unit where the rotary motion (rotation) of the drive shaft is converted to the linear motion (translation) of the carriage with high mechanical efficiency and low internal friction.

High-performance features such as high speed, good positioning accuracy, and high repeatability are ensured through a zero-backlash toothed belt drive and a linear guiding system.

A preassembled standard motor (with a motor adapter and a coupling) together with the standard drive, makes the system plug and drive ready. Compact dimensions and optimally selected motor combinations cover a wide range of applications.

The aluminium profile body includes side slots for clamping fixtures as well as slots for the magnetic field sensors.

Options, such as different motor sizes, together with a wide range of accessories and possible multi axis sistem combinations make this product highly flexible.

There is also an option of the mini linear unit without the preassembled motor if an individual motor is required.

There are prepared connection and centering holes on the carriage of the mini linear unit that allow mounting of the clamping fixtures, connection plates or custom applications.

Mini linear units MGTB can be easily assembled into a multi-axis system with other MGTB or MGBS linear units and/or mini electrical cylinders MCE or mini electrical sliders MSCE.

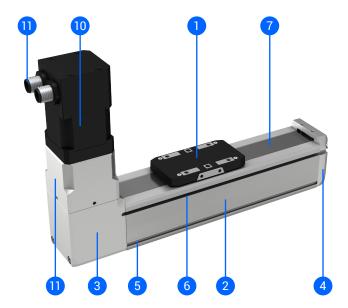
Excellent price-performance ratio and a quick delivery time, due to standard lengths, are ensured.

Each MGTB is optimally pre-lubricated and ready for a maintenance-free operating process.

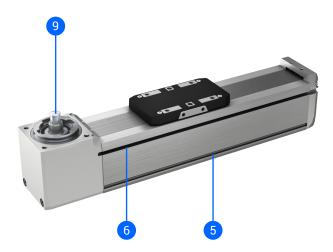
MGTB allows relatively high load capacities and optimal cycles for moving payloads at high speeds in both horizontal and vertical directions.

1 The aluminium profiles are manufactured according to the EN 12020-2 standard

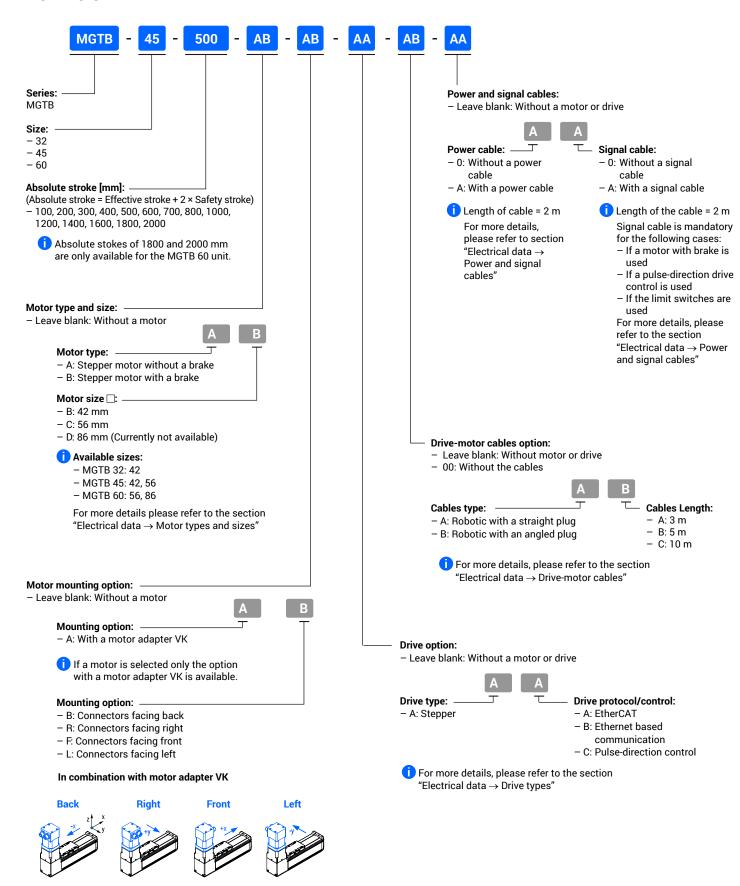
Motor adapter VK with a coupling and a motor


MGTB without a preassembled motor

Accessories, MGTB without a preassembled motor


STRUCTURAL DESIGN

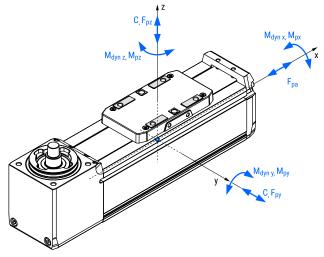
Combination with a standard motor and a motor adapter VK



- 1 Carriage
- 2 Aluminium profile
- 3 Drive block with a pulley
- 4 End block
- 5 Mounting slots6 Slot for the magnetic field sensors
- 7 Corrosion-resistance protection strip
- 8 Motor adapter VK with a coupling
- 9 The Drive shaft of the pulley
- 10 Preassembled motor (with/without a brake)
- 11 Standard connectors (motor, encoder and brake - optionally)

Without a motor

HOW TO ORDER


TECHNICAL DATA

General technical data

	Dynamic load	Dynamic moments ¹			Мах. р	ermissib	le loads		Max.	Absolute stroke	
MGTB	capacity ¹	Dylla	IIIIC IIIOIII	Forces		Moments			repeatability ²	Absolute stroke	
IVIOID	C [N]	M _{dyn x} [Nm]	M _{dyn y} [Nm]	M _{dyn z} [Nm]	F _{py} [N]	F _{pz} [N]	M _{px} [Nm]	M _{py} [Nm]	M _{pz} [Nm]	[mm]	[mm]
32	1310	4,8	4,1		200	300	2,0	1,8	1,3	±0,08	100, 200, 300, 400, 500, 600, 700, 800, 1000, 1200, 1400, 1600
45	3240	20,1	17,4		400	700	7,4	6,3	4,7	±0,08	100, 200, 300, 400, 500, 600, 700, 800, 1000, 1200, 1400, 1600
60	11190	77,4	79,8		850	2000	29,2	30,8	31,8	±0,08	100, 200, 300, 400, 500, 600, 700, 800, 1000, 1200, 1400, 1600, 1800, 2000

 ¹ Dynamic load capacity and dynamic moments of the linear guiding system.
 These values are the basis for calculating the service life.
 ² Valid for one-directional axial load.

Drive data

In Combination with a standard motor and a motor adapter VK

MGTB	Pulley-drive ratio	Pulley diameter	N	∕lotor	Max. permissible	Max. permissible payload ^{1,3}		Max. travel	Max. rotational speed ²	Max. acceleration
+ motor and VK	ratio	diameter			axial load ^{1, 3}	Horizontal	Vertical	Speed	Speed	acceleration
and vit	[mm/rev]	[mm]	Туре	Size □ [mm]	F _{pa} [N]	m _{ph} [kg]	m _{pv} [kg]	v _{max} [m/s]	n _{max} [rev/min]	a _{max} [m/s²]
32	66	21,00		42	25	0,9	0,9	1,500	1365	20
45	63	00.05	20.05	42	10	0,9	0,7	1,344	1280	20
45	03	20,05	Stepper	56	85	6,2	6,2	1,500	1430	20
CO	60 70	04.00		56	55	3,6	3,6	1,500	1155	20
60	78	24,83		86		20				

¹This value depends on the selected motor, travel speed and acceleration of the carriage (see the following diagrams relating to the combinations with the standard motors). MGTB with an absolute stroke of 500 mm is considered.

² Valid for the entire stroke range.

³ Cariage acceleration of 2 m/s² is considered.

Without a motor

MGTB	Pulley-drive ratio	Pulley diameter	Max. permissible	Max. perr payloa		Max. drive	No load torque	Max. permissible radial load on	Max. travel	Max. rotational	Max. acceleration
without	Tallo	ulametei	axial load ¹	Horizontal	Vertical	torque	torque	shaft	speed ¹	speed ¹	acceleration
a motor	[mm/rev]	[mm]	F _{pa} [N]	m _{ph} [kg]	m _{pv} [kg]	M _p [Nm]	M ₀ [Nm]	F _{pr} [N]	v _{max} [m/s]	n _{max} [rev/min]	a _{max} [m/s²]
32	66	21,00	65	31	5,4	0,68	0,07	50	1,500	1365	20
45	63	20,05	85	42	7,1	0,85	0,20	100	1,500	1430	20
60	78	24,83	130	65	11	1,61	0,40	200	1,500	1155	20

¹ Valid for the entire stroke range.

Operating conditions

Ambient temperature	0 °C ~ +50 °C
Ambient temperature without a motor	0 °C ~ +60 °C
Protection class	IP40
Duty cycle	100 %
Maintenance	Life-time pre-lubricated

All the data of the dynamic load capacities (of the linear guiding system) stated in the tables above are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety and service life.

We recommend a minimum dynamic safety factor of 5,0 or more. Please refer to page 75, where the calculation of the safety factor of the linear guiding system and how the applied load affects the service life are presented.

Mass and mass moment of inertia

MGTB	Moved mass ¹	Mass of the linear unit ²	Mass moment of inertia
without a motor	m _{m, MGTB} [kg]	m _{MGTB} [kg]	J _{мств} [10 ⁻² kg cm²]
32	0,06	0,37 + 0,0012 × Abs. stroke	9,19 + 0,0024 × Abs. stroke + 110,339 × m _{load}
45	0,15	0,92 + 0,0023 × Abs. stroke	18,80 + 0,0022 × Abs. stroke + 100,536 × m _{load}
60	0,45	2,12 + 0,0041 × Abs. stroke	81,72 + 0,0040 × Abs. stroke + 154,110 × m _{load}

¹The moved mass is already considered in the equation for calculating the mass of the linear unit m_{MGTB} and the mass moment of inertia J_{MGTB}. The moved mass includes the mass of the carriage.

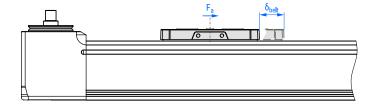
 $^{^{2}}$ For combination with standard motor and motor adapter VK the mass m_{MGTB} should be increased by $m_{VK+m\nu}$ see the table below.

Abs. stroke	Absolute stroke	[mm]
m _{load}	Applied mass to be moved	[kg]

Additional mass of the linear unit when combining the motor with the motor adapter VK $\,$

		1otor	Motor without a brake	Motor with a brake					
MGTB	IV	lotor	Mass of the motor and motor adapter VK						
	Туре	Size □ [mm]	m _{VK+m} [kg]						
32		42	0,52	0,65					
45		42	0,57	0,70					
45	Stepper	56	1,31	1,50					
60		56	1,50	1,69					
60		86	Currently n	ot available					

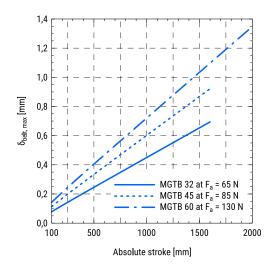
² Cariage acceleration of 2 m/s² is considered.

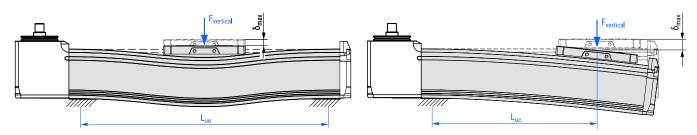

Planar moment of inertia

MCTD	Pro	file
MGTB	l _y [cm⁴]	I _z [cm⁴]
32	4,3	4,6
45	14,3	15,9
60	43,8	50,3

Holding torque of a motor brake

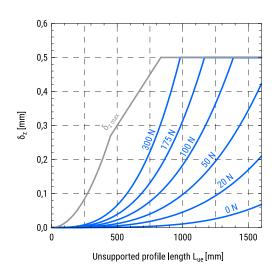
N	/lotor	Holding torque (brake)
Туре	Size □ [mm]	[Nm]
	42	0,4
Stepper	56	1,0
	86	Currently not available

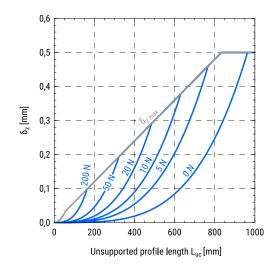

Deformation of the toothed belt under an axial load

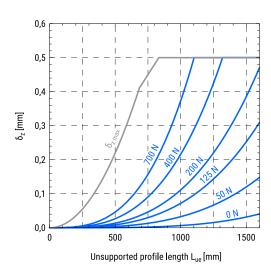

in the following diagram, the maximal toothed belt elongation in respect of the absolute stroke and a given axial load is presented.

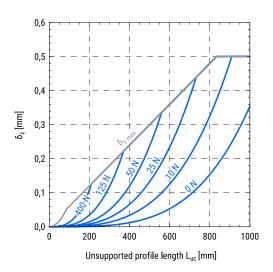
The maximum belt elongation $\delta_{belt,max}$ is proportionally changed in accordance with the ratio between the actual axial load F_a and the specific axial load given in the diagram for the particular size of the linear unit MGTR

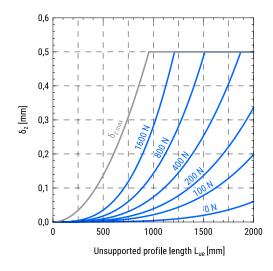
For more information about the absolute stroke please refer to the section "Dimensions \rightarrow Absolute stroke and length of the MGTB definition".

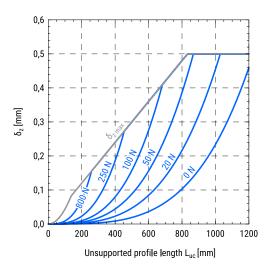



Deflection of the linear unit as a function of a vertical force and the unsupported profile length

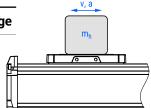

i In the following diagrams, the deflection of the linear unit as a function of a vertical force and unsupported profile length is presented. For the case of both ends of the profile are supported and for the case of a console mounting the left and the right diagrams below should be considered, respectively.

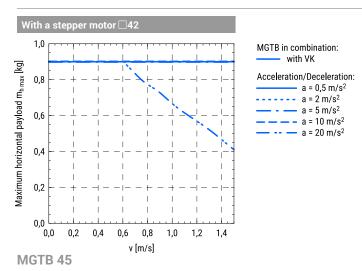

MGTB 32

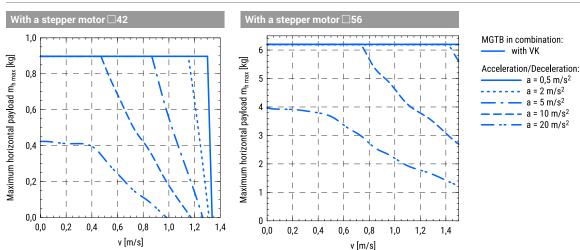


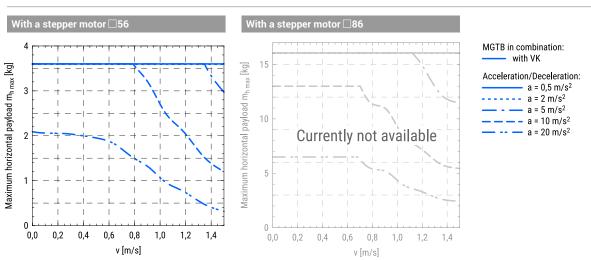


MGTB 45

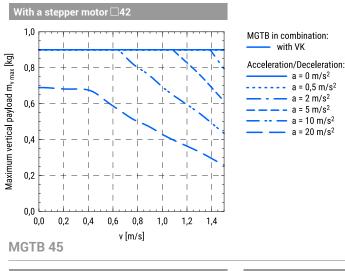


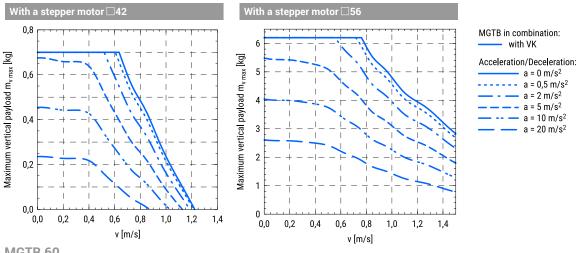

Maximum horizontal payload as a function of the travel speed and acceleration of the carriage


in the following diagrams, maximum horizontal payloads applied to the carriage as a function of the travel speed for different accelerations and different combinations of the standard motors are presented. Motor adapter VK is considered.

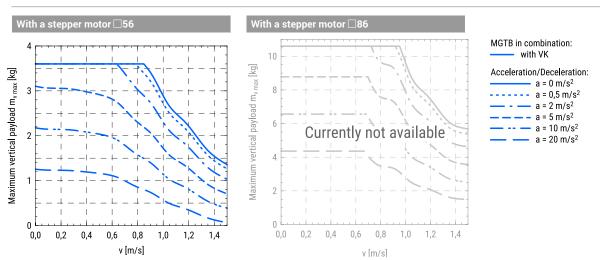


MGTB 32

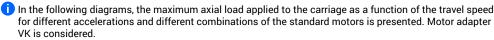


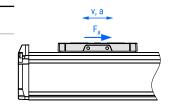


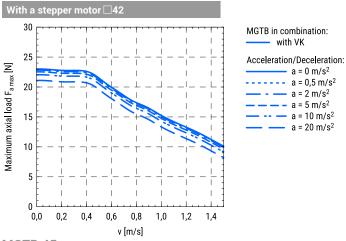
Maximum vertical payload as a function of the travel speed and acceleration of the carriage


in the following diagrams, the maximum vertical payloads applied to the carriage as a function of the travel speed for different accelerations and different combinations of the standard motors are presented. Motor adapter VK is considered.

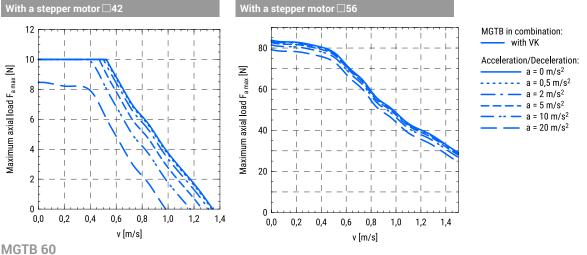
The diagrams shown below are valid for the linear units with an absolute stroke of 500 mm.

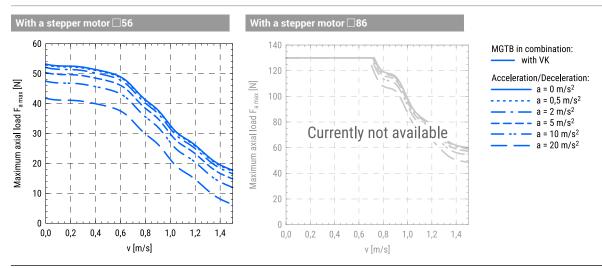


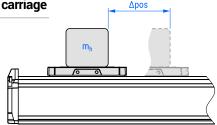




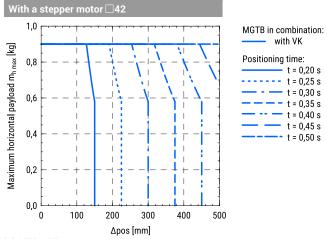
Maximum axial load as a function of the travel speed and acceleration of the carriage



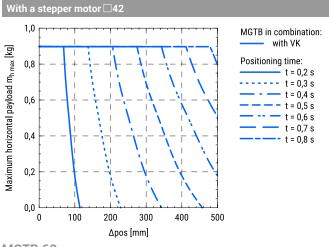


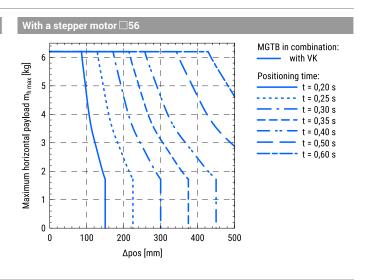


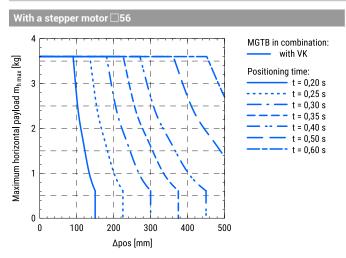
Maximum horizontal payload as a function of position change and positioning time of the carriage

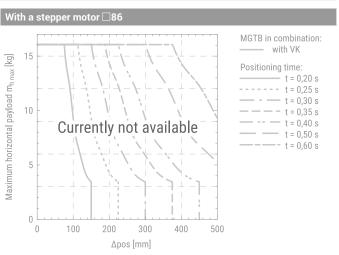

i The following diagrams show the maximum payload that can be moved by a certain horizontal distance within a positioning time frame. Acceleration/deceleration time of 100 ms is taken into account.

Diagrams depend on different combinations of the standard motors. Motor adapter VK is considered.

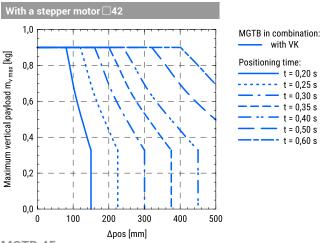

The diagrams shown below are valid for the linear units with an absolute stroke of 500 mm.

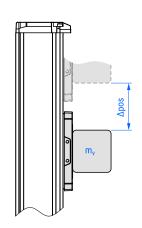



MGTB 32



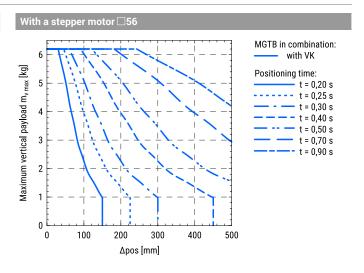
MGTB 45

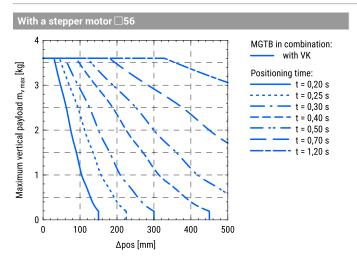

Maximum vertical payload as a function of position change and positioning time of the carriage

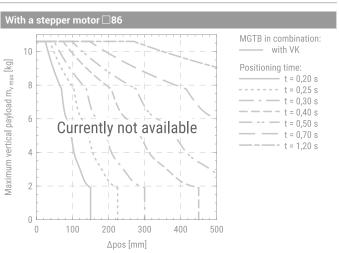

i The following diagrams show the maximum payload that can be moved by a certain vertical distance within a positioning time frame. Acceleration/deceleration time of 100 ms is taken into account.

Diagrams depend on different combinations of the standard motors. Motor adapter VK is considered.

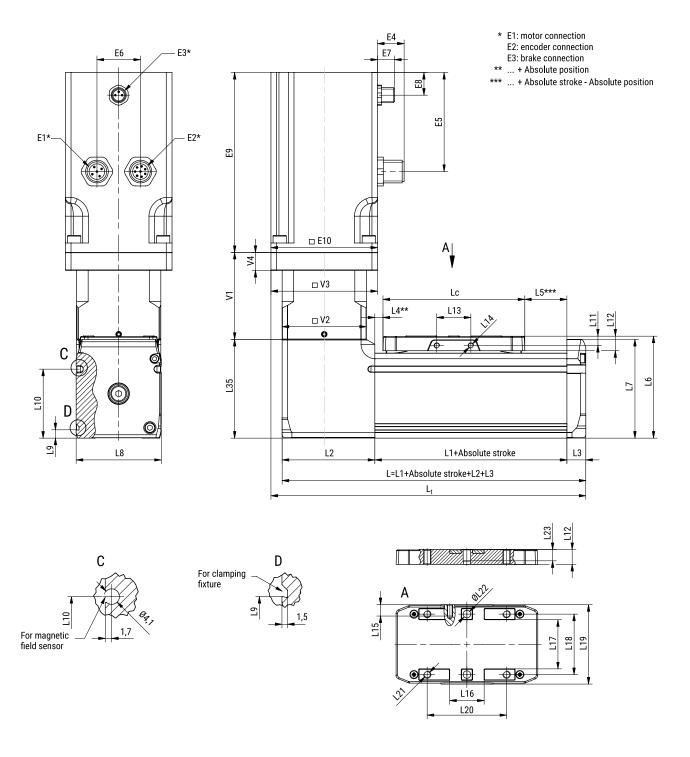
The diagrams shown below are valid for the linear units with an absolute stroke of 500 mm.

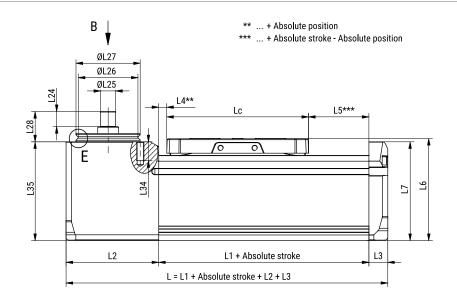

MGTB 32

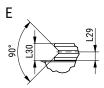


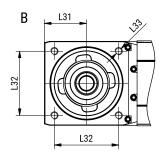


MGTB 45




DIMENSIONS


i All dimensions are in mm. Drawing scales may not be equal.


MGTB in combination with a standard motor and a motor adapter VK

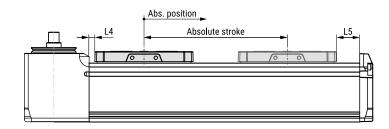
MGTB without the motor

MGTB dimensions

MGTB	Lc	L1	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11	L12	L13	L14	L15	L16	L17	L18	L19	L20	L21	ØL22 (H7)
32	65	104	32,75	8	2,5	36,5	38,5	35,75	32	4,4	23,7	4	5,9	18	M2	4	14,6	18,4	22,5	30	35	МЗ	2
45	75	124	49	10	4,3	44,7	54	52,25	45	4,4	36,5	5	7,8	18	МЗ	6	18,6	16,4	32	42	42	M4	4
60	90	139	64	12	3,2	45,8	72	68,75	60	4,4	45	6	11	30	M4	6	25,4	38,4	45	57	55	M5	5

MGTB	L23	L24	ØL25 (h7)	ØL26	ØL27 (h7)	L28	L29	L30	L31	L32	L33	L34	L35
32	5	7	5	22,6	25	14	2,3	4,5	15,75	24,5	МЗ	3	37,75
45	6	8	8	31,6	34	16	2,3	4,5	22,25	34	M4	10	54,85
60	8	10	10	39,6	42	20	2,3	4,5	29,75	48	M5	10	72,50

Motor adapter VK dimensions


MOTE	ı	/lotor	1/1			VA
MGTB	Туре	Size □ [mm]	V1	□V2	□V3	V4
32		28	36	31,5	31,5	0
32		42	40	31,5	42	5,5
45	Ctonnor	42	42	44,5	44,5	0
45	Stepper	56	46	44,5	56,4	9,5
60		56	52,5	59,5	59,5	0
		86	69	59,5	86	9,5

48

Motor dimensions

Motor			E1	E2	E3	E4	E5	E6	E7	E8	E9	□E10
Туре	Size □ [mm]	Brake	[E1	EZ.	E9	(±1)	(±0,3)	EO	(±1)	(±0,3)	(±1)	LEIU
Stepper	28	_	Currently not available									
	28	with										
	42	-	M12 5-pole	M12 8-pole	-	14	14	19,5	_	_	70,4	42,3
	42	with	M12 5-pole	M12 8-pole	M8 3-pole	14	14	19,5	9	27	106,4	42,3
	56	_	M12 5-pole	M12 8-pole	_	14	13,4	23	_	_	98	56,4
	56	with	M12 5-pole	M12 8-pole	M8 3-pole	14	52,4	23	9	12	138	56,4
	86	_	Ourseaster mad available									
	86	with	Currently not available									

Absolute stroke of the MGBS definition

1 Dimensions L4 and L5 are presented in the dimensional drawing table above.

Absolute stroke definition

Absolute stroke = Effective stroke + 2 × Safety stroke

i Mini linear unit MGTB does not include any safety stroke.

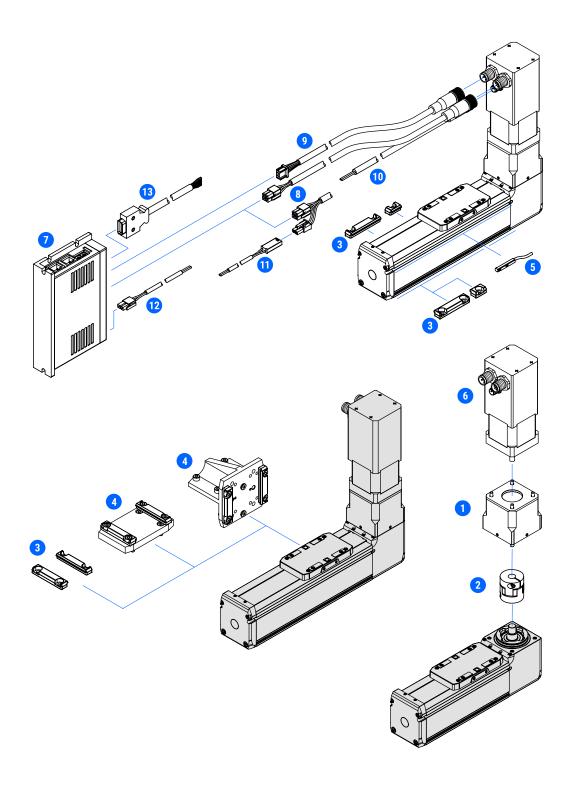
The absolute stroke is the distance between the two positions of the carriage that are as far apart as it is physically possible.

Length definition

With VK and a motor.

$$L_t = L + \frac{(V3 - V2)}{2}$$

Without a motor.


 $L_t = L$

L = L2 + L1 + Abs. stroke + L3

i Lengths L and L_t are defined as it is presented on the dimensional drawings above, where the lengths of the motor and motor adapter VK are also considered.

Abs. stroke	Absolute stroke	[mm]
Abs. position	Absolute position	[mm]
L	Length	[mm]
L _t	Total length	[mm]

ACCESSORIES

ACCESSORIES

#	Accessories	Compatible with MGBS size			Page	
#	Accessories	32	32 45		Paye	
1	Motor adapter VK	•	•	•	59	Motor adapeters
2	Coupling	•	•	•	60	Elastomer couplings
3	Clamping fixture	•	•	•	63	Mounting attachement accessories
4	Connection plate	•	•	•	64	Mounting attachement accessories
5	Magnetic field sensor	•	•	•	66	Limit switches
6	Motor	•	•	•	67	Motors
7	Drive	•	•	•	68	Drives
8	Motor cable ¹	•1	•	•	69	
9	Encoder cable	•	•	•	69	
10	Brake cable ¹	- 1	•	•	69	Cables
11	Brake to terminal cable ¹	•	_	_	69	Capies
12	Power cable	•	•	•	71	
13	Signal cable	•	•	•	71	

¹ For the stepper motor size of 28, the motor and brake cables are combined into one cable. For connectivity between the brake and terminal, an additional brake to terminal cable is used