CHARACTERISTICS

The MGBS is a ball screw driven mini linear unit where the rotary motion (rotation) of the drive shaft is converted to the linear motion (translation) of the carriage with high mechanical efficiency and low internal friction.

High-performance features such as high speed, good positioning accuracy, and high repeatability are ensured through a precision ball screw drive and a linear guiding system.

A preassembled standard motor (in-line with a motor adapter and a coupling or in-parallel with a motor side drive and a timing belt) together with a standard drive, makes the system plug and drive ready. Compact dimensions and optimally selected motor combinations cover a wide range of applications.

The aluminium profile body includes side slots for clamping fixtures as well as slots for the magnetic field sensors.

Options, such as different ball screw leads, together with a wide range of accessories and possible multi-axis sistem combinations make this product highly flexible.

There is also an option of the mini linear unit without the preassembled motor if an individual motor is required.

There are prepared connection and centering holes on the carriage of the mini linear unit that allow mounting of the clamping fixtures, connection plates or custom applications.

Mini linear units MGBS can be easily assembled into a multi-axis system with other MGBS or MGTB linear units and/or mini electrical cylinders MCE or mini electrical sliders MSCE.

Excellent price-performance ratio and a quick delivery time, due to standard lengths, are ensured.

Each MGBS is optimally pre-lubricated and ready for a maintenance-free operating process.

MGBS allows relatively high load capacities and optimal cycles for moving payloads at high speeds in both horizontal and vertical directions.

i The aluminium profiles are manufactured according to the EN 12020-2 standard

Motor adapter VK with a coupling and a motor

Motor side drive with a timing belt and a motor

Accessories, MGBS without a preassembled motor

STRUCTURAL DESIGN

Combination with a standard motor and a motor adapter VK

- 1 Carriage
- 2 Aluminium profile
- 3 Drive block
- 4 End block
- 5 Mounting slots
- 6 Slot for the magnetic field sensors
- 7 Corrosion-resistance protection strip
- 8 Motor adapter VK with a coupling
- 9 Motor side drive MSD with a timing belt
- 10 Drive shaft of the precision ball screw drive
- 11 Preassembled motor (with/without a brake)
- 12 Standard connectors (motor, encoder and brake – optionally)

Combination with a standard motor and a motor side drive MSD

Without a motor

TECHNICAL DATA

General technical data

	Ball	Dynamic axial load	Dynamic Dynamic Ixial load load		ynamic load Dynamic moments³			Max. permissible loads				Axial backlash	Max.	Absolute stroke							
MGBS	screw	capacity ¹	capacity ³			Forces Moments		(BS) ²	repeatability												
	d × l [mm]	C _a [N]	C [N]	M _{dyn x} [Nm]	M _{dyn y} [Nm]	M _{dyn z} [Nm]	F _{py} [N]	F _{pz} [N]	M _{px} [Nm]	M _{py} [Nm]	M _{pz} [Nm]	[mm]	[mm]	[mm]							
32	8 × 2	2000	1310	1310	48	41	1	200	300	20	18	13	< 0.06	+0.015	50, 100, 150, 200, 250, 300, 400, 500						
02	8 × 8	1500			1010	1010	.,e	.,.	200	000	2,0	1,0	1,0	_ 0,00		600, 700, 800					
45	10 × 3	3500	3240	2240	3240	3240	3240	3240	3240	3240	3240	20.1	174	400	700	71	63	47	< 0.06	+0.015	50, 100, 150, 200, 250, 300, 400, 500
	10 × 10	3200		20,1	5,1 17,4		400	100	7,4	0,5	-,,	≤ 0,00	10,015	600, 700, 800							
60	60 12×5 5000 12×10 3800 11190	11100	77 /	77.4 70.0	8	850	2000	20.2	30.8	21.8	< 0.06	+0.010	50, 100, 150, 200, 250,								
00		× 10 3800 77,4 79,8		,0	2000 29,2 30,8		,0 31,0 ≤ 0,00		10,010	700, 800, 900, 1000											

¹ Dynamic axial load capacity of the ball screw drive. This value is the basis for calculating the service life.
² Valid for ball screw drive in new condition.
³ Dynamic load capacity and dynamic moments of the linear guiding system. These values are the basis for calculating the service life.
⁴ d = ball screw nominal diameter, I = ball screw lead (for one revolution).

⁵ Valid for one-directional axial load.

Drive data

Combination with a standard motor and a motor adapter VK

MGBS +	Poll oorow		Mator	Max. permissible	Max. permissible	payload ^{1, 2, 3}	Max. travel	Max. rotational	Max.
motor	Dall Sciew	MOLOI		axial load ^{1, 2, 3}	Horizontal	Vertical	speed ²	speed ²	acceleration
and VK	d × I [mm]	Туре	Size□[mm]	F _{pa} [N]	m _{ph} [kg]	m _{pv} [kg]	v _{max} [m/s]	n _{max} [rev/min]	a _{max} [m/s²]
	0 ~ 2		28	200	31	17	0,093	2800	16
22	0 ^ 2		42	285	31	24	0,100	3000	20
52	8 × 8	-	28	50	6,2	4,1	0,300	2250	
			42	200	31	17	0,400	3000	
	10 × 3	10 × 3 Stepper	42	395	71	33	0,146	2920	
45			56	695	71	59	0,150	3000	20
40			42	120	20	10	0,477	2860	
	10 × 10		56	570	71	48	0,500	3000	
	10 × E		56	1030	204	87	0,250	3000	
60	12 * 5		86		Currently	not available	e		
	10 × 10]	56	525	127	44	0,500	3000	20
	12×10	12×10		86		Currently	not available	e	

¹ This value depends on the selected motor, travel speed and acceleration of the carriage (see the following diagrams relating to the combinations with the standard motors). MGBS with an absolute stroke of 500 mm is considered.

² The value depends on the absolute stroke. The maximum permissible axial load also depends on the travel speed. Please, see the following diagrams. ³ Carriage acceleration of 2 m/s² is considered.

11000	Poll corow	Ball screw Motor		Max. permissible	Max. permissible payload ^{1, 2, 3}		Max. travel	Max. rotational	Max.	
MGBS + motor and MSD	Dali Sciew			axial load ^{1, 2, 3}	Horizontal	Vertical	speed ²	speed ²	acceleration	
	d × l [mm]	Туре	Size□[mm]	F _{pa} [N]	m _{ph} [kg]	m _{pv} [kg]	v _{max} [m/s]	n _{max} [rev/min]	a _{max} [m/s²]	
	0~7		28	160	31	13	0,064	1920	16	
22	0 ^ 2		42	285	31	24	0,100	3000	20	
52	8 × 8		28	40	6,3	3,3	0,208	1560		
			42	175	31	15	0,400	3000		
	10 × 3	10 × 2		42	330	71	28	0,137	2740	13
45		- Stepper	56	695	71	59	0,150	3000	20	
45	10 10		42	110	19	9	0,410	2460		
	10 × 10		56	450	71	38	0,500	3000		
	10 v E			56	900	204	76	0,250	3000	
60	12×0		86		Curre	ntly not availat	ole		20	
00	10 × 10]	56	450	126	38	0,500	3000	20	
	12×10		86		Currently not availal			ble		

Combination with a standard motor and a motor side drive MSD

Without a motor

	Ball	Max.	Max. permiss	sible payload ³	Max. drive	No load	Max. permissible	Max. travel	Max. rotational	Max.
MGBS without	screw	permissible axial load ²	Horizontal	Vertical ²	torque	torque	radial load on shaft	speed ²	speed ²	acceleration
a motor	d × l [mm]	F _{pa} [N]	m _{ph} [kg]	m _{pv} [kg]	M _p [Nm]	M ₀ [Nm]	F _{pr} [N]	v _{max} [m/s]	n _{max} [rev/min]	amax [m/s²]
22	8 × 2	285	31	24	0,10	0,04	50	0,150	4500	20
32	8 × 8	285	31	24	0,40	0,05	50	0,600		20
45	10 × 3	695	71	59	0,37	0,10	100	0,225	4500	20
45	10 × 10	695	71	59	1,23	0,11	100	0,750		20
60	12 × 5	1100	204	93	0,97	0,16	200	0,483	5800	
00	12 × 10	1100	204	93	1,95	0,17		0,967		20

¹ This value depends on the selected motor, travel speed and acceleration of the carriage (see the following diagrams relating to the combinations with the standard motors). MGBS with an absolute stroke of 500 mm is considered.

² The value depends on the absolute stroke. The maximum permissible axial load also depends on the travel speed. Please, see the following diagrams.

³ Carriage acceleration of 2 m/s² is considered.

Operating conditions

Ambient temperature	0 °C ~ +50 °C
Ambient temperature without a motor	0 °C ~ +60 °C
Protection class	IP40
Duty cycle	100 %
Maintenance	Life-time pre-lubricated

i Recommended values of loads:

All the data of the dynamic load capacities (linear guiding system and ball screw drive) stated in the tables above are theoretical without considering any safety factor. The safety factor depends on the application and its requested safety and service life.

We recommend a minimum dynamic safety factor of 5,0 or more. Please refer to pages 75 to 78, where the calculation of the safety factor of the ball screw drive and linear guiding system and how the applied load affects the service life are presented.

Mass and mass moment of inertia

MGBS without	Ball screw	Moved mass ¹	Mass of the linear unit ²	Mass moment of inertia
a motor	d × I [mm]	m _{m, MGBS} [kg]	m _{MGBS} [kg]	J _{MGBS} [10 ⁻² kg cm²]
32	8 × 2	0.12	0.26 + 0.001E × Aba attaka	0,85 + 0,0024 × Abs. stroke + 0,1013 × m _{load}
	8 × 8	0,12	0,50 + 0,0015 × ADS. SHORE	1,04 + 0,0025 × Abs. stroke + 1,6211 × m _{load}
45	10 × 3	0.22	0.00 + 0.0028 × Abo strake	3,17 + 0,0055 × Abs. stroke + 0,2280 × m _{load}
45	10 × 10	0,23	0,80 + 0,0028 × ADS. Stroke	3,72 + 0,0056 × Abs. stroke + 2,5330 × m _{load}
60	12 × 5	0.52	1.00 + 0.0040 × Abo strake	11,04 + 0,0132 × Abs. stroke + 0,6333 × m _{load}
	12 × 10	0,53	1,80 + 0,0049 × ADS. Stroke	11,97 + 0,0126 × Abs. stroke + 2,5330 × m _{load}

¹ The moved mass is already considered in the equation for calculating the mass of the linear unit m_{MGBS} and the mass moment of inertia J_{MGBS}. The moved mass includes the mass of the carriage together with the ball nut.

² For the combination with a standard motor and motor adapter VK or motor side drive MSD the mass m_{MGBS} should be increased by m_{VK+m} or m_{MSD+m} respectively, see the table below.

Abs. stroke	Absolute stroke	[mm]
m _{load}	Applied mass to be moved	[kg]

Additional mass of the linear unit when combining the motor with the motor adapter VK or the motor side drive MSD

	Motor		Motor with	out a brake	Motor with a brake		
MGBS			Mass of the motor and motor adapter VK	Mass of the motor and motor side drive MSD	Mass of the motor and motor adapter VK	Mass of the motor and motor side drive MSD	
	Туре	Size □ [mm]	m _{VK + m} [kg]	m _{MSD + m} [kg]	m _{VK + m} [kg]	m _{MSD + m} [kg]	
22		28		Currently n	ot available		
32		42	0,52	0,62	0,65	0,75	
45	Stoppor	42	0,57	0,71	0,70	0,84	
45	Stepper	56	1,31	1,49	1,50	1,68	
60		56	1,50	1,73	1,69	1,92	
		86		Currently n	ot available		

Planar moment of inertia

MODO	Pro	file
MGBS	l _y [cm⁴]	I _z [cm ⁴]
32	4,3	4,6
45	14,3	15,9
60	43,8	50,3

Holding torque of a motor brake

N	lotor	Holding torque (brake)
Туре	Size □ [mm]	[Nm]
	28	Currently not available
Stoppor	42	0,4
Stepper	56	1,0
	86	Currently not available

Deflection of the linear unit as a function of a vertical force and the unsupported profile length

i In the following diagrams, the deflection of the linear unit as a function of a vertical force and unsupported profile length is presented. For the case of both ends of the profile are supported and for the case of a console mounting the left and the right diagrams below should be considered, respectively.

MGBS 32

Maximum travel speed of the carriage as a function of the absolute stroke

of absolute stroke for a different ball screw lead is presented. Values on the curves represent a ball screw lead of the linear unit.

i In the following diagrams, the maximum travel speed of the carriage as a function

MGBS 60

Maximum axial load as a function of absolute stroke

i In the following diagrams, the maximum axial load applied to the carriage of the linear unit as a function of absolute stroke is presented.

MGBS 45

Maximum axial load as a function of the travel speed of the carriage

MGBS 32

MGBS 60

i In the following diagrams, the maximum axial loads applied to the carriage as a function of travel speed for a different values of the absolute stroke are presented.

Values on the curves represent an absolute stroke of the linear unit.

Maximum horizontal payload as a function of the travel speed and acceleration of the carriage

In the following diagrams, maximum horizontal payloads applied to the carriage as a function of the travel speed for different accelerations, different ball screw leads and different combinations of the standard motors are presented. Motor adapter VK and a motor side drive MSD are also considered. The diagrams shown below are valid for the linear units with an absolute stroke of 500 mm. Limitations regarding travel

The diagrams shown below are valid for the linear units with an absolute stroke of 500 mm. Limitations regarding travel speed and axial loads in respect of absolute stroke are not considered and should be taken into account separately. For more information please refer to the diagrams on pages 16–18.

Maximum vertical payload as a function of the travel speed and acceleration of the carriage

In the following diagrams, maximum vertical payloads applied to the carriage as a function of the travel speed for different accelerations, different ball screw leads and different combinations of the standard motors are presented. Motor adapter VK and a motor side drive MSD are also considered.

The diagrams shown below are valid for the linear units with an absolute stroke of 500 mm. Limitations regarding travel speed and axial loads in respect of absolute stroke are not considered and should be taken into account separately. For more information please refer to the diagrams on pages 16–18.

MGBS 32

0

0,00 0,02

0,04 0,06 0,08

v [m/s]

0,10 0,12 0,14

٥

0,0

0,1

0,2

v [m/s]

0,3

0,4

0,5

Maximum axial load as a function of travel speed and acceleration of the carriage

🕕 In the following diagrams, maximum axial load applied to the carriage as a function of the travel speed for different accelerations, different ball screw leads and different combinations of the standard motors is presented. Motor adapter VK and a motor side drive MSD are also considered.

The diagrams shown below are valid for the linear units with an absolute stroke of 500 mm. Limitations regarding travel speed and axial loads in respect of absolute stroke are not considered and should be taken into account separately. For more information please refer to the diagrams on pages 16-18.

MGBS 32

100

0

0,00

0,02 0,04

0,06 0,08

v [m/s]

v.a

0,10 0,12 0,14

20

0

0,0

0,1

0,2

0,3

v [m/s]

0,4

0,5

m

Δpos

Maximum horizontal payload as a function of position change and positioning time of the carriage

🚺 The following diagrams show the maximum payload that can be moved by a certain horizontal distance within a positioning time frame. Acceleration/deceleration time of 100 ms is taken into account.

Diagrams depend on the ball screw leads and different combinations of the standard motors. Motor adapter VK and a motor side drive MSD are also considered

The diagrams shown below are valid for the linear units with an absolute stroke of 500 mm. Limitations regarding travel speed and axial loads in respect of absolute stroke are not considered and should be taken into account separately. For more information please refer to the diagrams on pages 16-18.

MGBS 32

∆pos [mm]

10 × 10 with a stepper motor \Box 56

MGBS in combination: with VK with MSD Positioning time: t = 0,25 s t = 0,50 s

	t = 0,50 s
<u> </u>	t = 0,75 s
	t = 1,00 s
	t = 1,25 s
	t = 1,50 s
	t = 1,75 s

12 × 5 with a stepper motor \Box 56

 MGBS in combination:

 with VK

 with MSD

 Positioning time:

 t = 0,25 s

 t = 1,05 s

 t = 1,05 s

 t = 2,00 s

- t = 2,50 s

-- t = 3,25 s

12 × 10 with a stepper motor \Box 56

 with VK

 with MSD

 Positioning time:

 t = 0,25 s

 t = 0,75 s

 t = 1,10 s

 t = 1,10 s

 t = 2,00 s

 t = 2,00 s

MGBS in combination:

12 × 5 with a stepper motor \Box 86

 t = 1,00 s
 t = 1,50 s
 t = 2,00 s
 t = 2,50 s
 t = 3,00 s

Δpos

m_v

Maximum vertical payload as a function of position change and positioning time of the carriage

The following diagrams show the maximum payload that can be moved by a certain vertical distance in a positioning time frame. Acceleration/deceleration time of 100 ms is taken into account.

Diagrams depend on the ball screw leads and combinations of standard motors. Motor adapter VK and a motor side drive MSD are also considered.

The diagrams shown below are valid for the linear units with an absolute stroke of 500 mm. Limitations regarding travel speed and axial loads in respect of absolute stroke are not considered and should be taken into account separately. For more information please refer to the diagrams on pages 16–18.

```
MGBS 32
```


∆pos [mm]

∆pos [mm]

10 × 3 with a stepper motor \Box 56

 MGBS in combination:

 with VK

 with MSD

 Positioning time:

 t = 0,5 s

 t = 1,0 s

 t = 4,0 s

 t = 4,0 s

 t = 5,0 s

MGBS 60

12 × 5 with a stepper motor \Box 56

MGBS in combination: with VK with MSD

Positioning time: t = 0,5 s t = 1,0 s t = 1,5 s t = 1,5 s t = 2,0 s t = 3,0 s t = 4,5 s t = 6,0 s

10 × 10 with a stepper motor \Box 56

MGBS in combination: with VK with MSD Positioning time: t = 0,25 s t = 0,25 s

t = 0,50 s
— — — – t = 1,00 s
— — t = 1,50 s
— t = 2,50 s
t = 4,00 s

12 × 10 with a stepper motor \Box 56

 with VK

 with MSD

 Positioning time:

 t = 0,25 s

 t = 0,50 s

 t = 0,75 s

 t = 1,25 s

 t = 2,00 s

MGBS in combination:

t = 3,00 s t = 4,00 s

	12 × !	5 witl	h a st	tepper	motor 🗆	86
--	--------	--------	--------	--------	---------	----

 MGBS in combination:

 with VK

 with MSD

 Positioning time:

 t = 0,25 s

 t = 0,50 s

t = 1,00 s t = 1,50 s t = 2,25 s t = 3,00 s t = 4,00 s

12 × 10 with a stepper motor \Box 86

MGBS in combination: with VK with MSD

Positioning	time:
	t = 0,25 s
	t = 0,50 s
	t = 0,75 s
	t = 1,00 s
	t = 1,50 s
	t = 2,25 s
	t = 3,50 s

28 UNIMOTION

DIMENSIONS

i All dimensions are in mm. The scale of the drawings may not be equal.

MGBS in combination with a standard motor and a motor side drive MSD

MGBS without a motor

MGBS dimensions

MGBS	Lc	LI	L2	L3	L4	L5	L6	L7	L8	L9	L10	L11	L12	2 L13	L14	L15	L16	L17	L18	L19	L20	L21	ØL22 (H7)
32	65	81,5	16	8	2,5	14	38,5	35,75	32	4,4	23,7	4	5,9	18	M2	4	14,6	18,4	22,5	30	35	М3	2
45	75	97	20	10	4,3	17,7	54	52,25	45	4,4	36,5	5	7,8	3 18	M3	6	18,6	26,4	32	42	42	M4	4
60	90	133	24	12	3,2	39,8	72	68,75	60	4,4	45	6	11	30	M4	6	25,4	38,4	45	57	55	M5	5
MGBS	L23	L24	ØL2 (h7)	5 Ø	L26	ØL27 (h7)	L 28	L29	L30	L31	L32	.33	L34	L35									
32	5	7	5	2	2,6	25	14	2,3	4,5	20	24,5	M3	6	35,75									
45	6	8	8	3	1,6	34	16	2,3	4,5	30	34	M4	10	52,25									
60	8	10	10	3	9,6	42	20	2,3	4,5	39	48	M5	10	68,75									

In order to improve the products in this catalogue the specifications are subject to change without notice.

Motor adapter VK and a motor side drive MSD dimensions

MORE	Ν	Motor Type Size□[mm] V1			VA	61	60	S3	64	95	66	67	00	60	e10	e11	610	612	e14	
IVIGES	Туре					V4	51	32	(±0,5)	34		50	01	30	39	310	511	312	515	314
22		28	36	31,5	31,5	0	22	15,75	52,5	17,25	22	4	22	M5	6	31,5	31,5	44,5	0	85,5
32		42	40	31,5	42	5,5	22	15,75	70,5	23,75	22	4,5	22	M5	6,5	31,5	44,5	44,5	48	110
45	Stepper	42	42	44,5	44,5	0	27,5	22,25	81	23,75	27,5	4,5	32	M6	8,5	44,5	44,5	59,5	0	127
40		Stepper	56	46	44,5	56,4	9,5	27,5	22,25	88,5	31,25	27,5	6,5	32	M6	8,5	44,5	59,5	59,5	63,5
60		56	52,5	59,5	59,5	0	33	29,75	96	31,25	33	6,5	38	M6	8	59,5	59,5	85,5	0	157
00		86	69	59,5	86	9,5	33	29,75	121,5	44,25	33	8,5	38	M6	8	59,5	85,5	86,5	81,5	195,5

Motor dimensions

	Motor		E1	ED	E3	E4 (±1)	E5	EG	E7	E8 (±0,3)	E9 (±1)	□ E10			
Туре	Size□[mm]	Brake		EZ			(±0,3)	EO	(±1)						
	28	_		Currently not available											
Otoma an	28	with	Guilenity not available												
	42	_	M12 5-pole	M12 8-pole	-	14	14	19,5	-	-	70,4	42,3			
	42	with	M12 5-pole	M12 8-pole	M8 3-pole	14	14	19,5	9	27	106,4	42,3			
Stepper	56	_	M12 5-pole	M12 8-pole	_	14	13,4	23	-	_	98	56,4			
	56	with	M12 5-pole	M12 8-pole	M8 3-pole	14	52,4	23	9	12	138	56,4			
	86	_													
	86	with		Currently not available											

Absolute stroke of the MGBS definition

Dimensions L4 and L5 are presented in the dimensional drawing table above.

Absolute stroke definition

Absolute stroke = Effective stroke + 2 × Safety stroke

i Mini linear unit MGBS does not include any safety stroke.

The absolute stroke is the distance between the two positions of the carriage that are as far apart as it is physically possible.

Length definition

With VK and a motor. $L_t = L + E9 + V1$

With MSD and a motor: $L_t = L + S1$

Without a motor: $L_t = L$

L = L1 + Abs. stroke + L2 + L3

Lengths L and L_t are defined as it is presented in the dimensional drawings above, where the lengths of the motor, motor adapter VK and motor side drive MSD are also considered.

Abs. stroke	Absolute stroke	[mm]
Abs. position	Absolute position	[mm]
L	Length	[mm]
Lt	Total length	[mm]

ACCESSORIES

ACCESSORIES

#	Accessories	Compat	Daga		
#	Accessories	32	45	60	Faye
1	Motor adapter VK	•	•	•	59
2	Coupling	•	•	•	60
3	Motor side drive MSD	•	•	•	61
4	Clamping fixture	•	٠	•	63
5	Connection plate	•	٠	•	64
6	Magnetic field sensor	•	•	•	66
7	Motor	•	•	•	67
8	Drive	•	•	•	68
9	Motor cable ¹	•1	•	•	69
10	Encoder cable	•	•	•	69
11	Brake cable ¹	•1	•	•	69
12	Brake to terminal cable ¹	•	—	—	69
13	Power cable	•	•	•	71
14	Signal cable	•	•	•	71

Motor adapters	_							
Elastomer couplings								
Motor side drives	N							
Mounting attachement	_							
Limit switches								
Motors	Mot							
Drives								
Cables								

¹ For the stepper motor size of 28, the motor and brake cables are combined into one cable. For connectivity between the brake and terminal, an additional brake to terminal cable is used