

SCHÄFER

Product overview

RB,3015,3015.1

For medium torque transmission. For medium bending moments Average installation lenght Page 136

3015 DK, 3015.1 DK

For high torque transmission.
For medium bending moments.
Average installation lenght
Page 142

3020

For high torque transmission Low bending moment takes place via the hub Short installation lenght Page 146

4006

For very high torque transmission. For very high bending moments. Wide installation lenght (Especially for pulley)
Page 150

8006
 (Locking elements)

For low torque transmission
Small installation space
Page 154

TAS 110

For medium torque transmission.
For medium bending moments.
Small hub diameter
Page 158
TAS 130

For medium torque transmission.
For medium bending moments.
Average installation lenght
Page 160

TAS 131

For medium torque transmission.
For medium bending moments.
Average installation lenght
Page 160

Description of function

Locking devices of the types TAS ...

The main function of a locking assembly is the safe connection of a shaft to a hub by means of friction. For example, between a shaft and a gear hub. The locking assembly creates a play-free connection by expanding between the shaft and the hub. This type of connection is used mainly for transmitting torque.

It is installed by inserting the locking assembly between the components and the subsequent tightening of the screws. By using conical surfaces, the outer diameter increases and the inner diameter reduces. Radial pressure is built up. The clamping forces are provided and controlled by the screws (force-controlled). This allows the direct compensation of the clearance between shaft and hub.

The supplied locking devices are ready for installation.

To achieve proper operation with a sufficiently high coefficient of friction, the contact surfaces between shaft and hub must be clean and slightly oiled. Machine oil must be used as a lubricant. The functional surfaces of the locking assembly, threads and screw heads are prepared at the factory with oil film.

Product data

A detailed installation manual is available on our Homepage.

Data sheets

Contact us if a data sheet for an individual product is required.

- For CAD data of couplings, contact us directly, please.

Rolf Gertner

rolf.gertner@tas-schaefer.de
or
Mike Kemper
mike.kemper@tas-schaefer.de

Basic-Design

Clamping length for locking devices

Pressure rings and bush of a locking device must be fully supported on the shaft and in the hub bore.

Tightening torque of the clamping screws

The tightening torque values for screws given in the tables are based on a friction $\mu_{\text {ges }}=0,14$. Basically the specified tightening torque M_{A} can be reduced to $\mathrm{M}_{\text {Agew }}$, to reduce the stresses in the components. When using soft materials, as well as bored shafts, it might become necessary. By reducing M_{A}, the pressures of P_{N} and P_{w} and the transmittable torque M_{t} are also reduced. The ratio is approximately proportional and can be converted accordingly (approximately):

$$
M=\frac{M_{A g e w}}{M_{A}} M_{t} \quad \text { and } \quad p_{N, w}=\frac{M_{A g e w}}{M_{A}} p_{N, w}
$$

The tightening torques can not be reduced arbitrary, therefore apply the following limits:

$$
M_{\text {Agen }} \geq\left|\begin{array}{l}
\text { Class } 8.8: 0,85 M_{A} \\
\text { Class 10.9:0,70 } M_{A} \\
\text { Class 12.9:0,60 } M_{A}
\end{array}\right| \leq M_{A}
$$

Locking assemblies of type RB, 3015.1 and 3015.1 DK are excluded because they are already provided with reduced values.

Tolerances and surfaces

The values found in the product data, base on surface quality and tolerances according to the tables there. These values are given as recommendations.

Higher surface roughness reduces the transmissible torque and promote unwanted settlings. Larger clearance also reduces the transmissible torque.

In case of significantly differnt values, please contact us!

The calculation of the values, given in the catalog, are based on the following assumptions and simplification:

Transmissible torque

A connection by locking assembly is capable of transmitting torque, bending moment and axial force. Alternatively, the transmissible torque Mmax is specified in the product data. If such loads occur simultaneously, they must be added vectorially to form a resultant moment Mres. For the resultant moment applies:

$$
M_{\text {res }} \leq M_{\text {max }}
$$

At different load cases, these are individually checked against $M_{\text {max }}$!
$M_{\text {res }}$ is determined for combined load as follows:

$$
M_{\text {res }}=\sqrt{M_{T}^{2}+2 M_{B}^{2}+\left(F_{A X} \frac{d W}{2}\right)^{2}}
$$

*Basically the maximum bending moment corresponds to the maximum transmissible torque. A limitation is due to the change of the surface pressure at the edges of the connection, or by the higher loading of the locking assembly itself. Appropriate limits are found under each product. (See also under „bending moment")

This results in the following relationships:

Torque only:

The maximum torque is equivalent to $\mathrm{M}_{\text {max }}$.

Bending moment only:

The Bending moment coresponds with the indicated portion of M_{T}, on the product page.

Axial force only:

The maximum axial force is $\mathrm{M}_{\text {max }} \frac{2}{\mathrm{~d}_{\mathrm{w}}}$.
Depending on the application, additional safety factors need to be considered for the individual loads!
 SCHÄFER

Basics-Calculation

Radial Force:

Radial forces cause a change in pressure at the contact surface. In the force direction, the pressure increases on one side and is reduced accordingly on the other side. This depends on the amount of radial forceand the rigidity of the parts. The following equation can be used to approximate the pressure change:

$$
\Delta p_{w}=0,75 \frac{F_{A X}}{d_{w} I_{K}}
$$

The modified pressures $p_{w_{\text {min, max }}}$ results from the following equation:

$$
p_{w_{\min , \max }}=p_{w} \pm \Delta p_{w}
$$

The minimum pressure $\mathrm{p}_{\mathrm{w}_{\text {min }}}$ should be at least $30 \mathrm{~N} / \mathrm{mm}^{2}$ to avoid gap corrosion. In addition, the material must be selected for a maximum pressure $\mathrm{p}_{\mathrm{w}_{\max }}$.

Bending moment

Here the situation is similar to the radial forces. The pressure is greatest at the ends of the connection in this case. Again, the amount and stiffness are important. This leads to the following approximation:

$$
\Delta p_{w, N}=4,5 \frac{M_{B}}{d_{w} I_{K}^{2}}
$$

As before, the modified pressures results from:

$$
p_{W, N_{\text {min, max }}}=p_{W, N} \pm \Delta p_{W, N}
$$

The conditions for minimum and maximum pressure are the same as before. It should be noted that there could be a change in pressure due to radial force!

Shaft and hub calculation

The catalogue contains information about the generated surface pressure of each locking assembly. Due to the generated radial pressure the hub is deformed, whereupon resilience of the shaft and surface smoothing still has to be added. For solid shafts resilience is negligible but has to be considered for hollow shafts. They are showing greater deformation and therefore greater stresses. This should be considered in addition to the other loads.

The equivalent stresses in the hub can be determined according to various hypotheses such as GEH. On the following pages you will find tables showing required hub sizes, taking pressure, shape and yield strength of hub material into consideration. The shown values for hub sizes are only valid for a solid hub cross-section! The calculation is simplified, includes no additional safety and covers the range of static loads only. Various calculation methods for different cases can be found in mechanicalengineering literature. Specialized software allows the same. For complex geometry reliable results can be determined only by verified FEA.

The minimum yield strength of solid shafts should be at least 2 * PW , the yield point of hub material at least 1 * PN. These values are for orientation only, represent minimum requirements and cannot replace calculations for each application! They also do not release from doing so!

Notch effect

Generally there is a notch effect on the components, caused by the radial pressure of the locking device. This depends mainly on the applied pressure. On the shaft the notch effect is usually much higher than at the hub, as the pressure is higher here. The factors are in the range of 1.2 to 1.8 at the shaft. This can, for example, be mitigated by appropriate design details, such as relief notches.

Bore in the shaft (Hollow shaft)

A large bore d_{B} in the shaft or use of a hollow shaft, reduces the stiffness of this component against radial pressure. Basically, a bore should not be greater than $0,3 d_{w}$.

Hub-Calculation

The K-Values can directly be taken from the tables or can be calculated as follows:

When using TAS Locking assemblies a tension is generated by the surface pressure PN between locking assembly and hub. The required hub diameter is calculated using the same formula, as used for thick-walled hollow cylinder. The real tensions depend on the hub length and shape with respect to the length L of the locking assemblies. Depending on the type of hub, the factor C is taken into account for calculation.

$$
B=\geq 2 L
$$

$C=0,8$

$B=\geq L$

$$
C=1,0
$$

Hub Outside Diameter

$\begin{gathered} p_{N} \\ N / m m^{2} \end{gathered}$	K-Factor for hubtype with $\mathrm{C}=0,6$										
	Yield strength hubmaterial ($\mathrm{N} / \mathrm{mm}^{2}$)										
	150	180	210	240	270	300	330	360	390	420	450
50	1,225	1,184	1,155	1,134	1,119	1,106	1,096	1,088	1,081	1,075	1,070
55	1,251	1,204	1,172	1,149	1,131	1,117	1,106	1,097	1,089	1,082	1,077
60	1,278	1,225	1,190	1,164	1,144	1,129	1,116	1,106	1,097	1,090	1,084
65	1,305	1,247	1,207	1,179	1,157	1,140	1,127	1,115	1,106	1,098	1,091
70	1,334	1,269	1,225	1,194	1,170	1,152	1,137	1,125	1,115	1,106	1,099
75	1,363	1,291	1,244	1,209	1,184	1,164	1,148	1,134	1,123	1,114	1,106
80	1,394	1,315	1,262	1,225	1,197	1,176	1,158	1,144	1,132	1,122	1,114
85	1,425	1,339	1,282	1,241	1,211	1,188	1,169	1,154	1,141	1,130	1,121
90	1,458	1,363	1,301	1,258	1,225	1,200	1,180	1,164	1,150	1,139	1,129
95	1,492	1,389	1,322	1,274	1,240	1,213	1,191	1,174	1,159	1,147	1,136
100	1,528	1,415	1,342	1,291	1,254	1,225	1,202	1,184	1,168	1,155	1,144
105	1,565	1,442	1,363	1,309	1,269	1,238	1,214	1,194	1,177	1,164	1,152
110	1,604	1,469	1,385	1,327	1,284	1,251	1,225	1,204	1,187	1,172	1,160
115	1,645	1,498	1,407	1,345	1,299	1,264	1,237	1,215	1,196	1,181	1,168
120	1,688	1,528	1,430	1,363	1,315	1,278	1,249	1,225	1,206	1,190	1,176
125	1,733	1,559	1,453	1,382	1,331	1,291	1,261	1,236	1,215	1,198	1,184
130	1,780	1,591	1,478	1,402	1,347	1,305	1,273	1,247	1,225	1,207	1,192
135	1,830	1,624	1,502	1,421	1,363	1,319	1,285	1,258	1,235	1,216	1,200
140	1,883	1,659	1,528	1,442	1,380	1,334	1,298	1,269	1,245	1,225	1,208
145	1,940	1,695	1,554	1,462	1,397	1,348	1,310	1,280	1,255	1,234	1,217
150	-	1,733	1,582	1,484	1,415	1,363	1,323	1,291	1,265	1,244	1,225
155	-	1,772	1,610	1,506	1,433	1,378	1,336	1,303	1,276	1,253	1,234
160	-	1,813	1,639	1,528	1,451	1,394	1,350	1,315	1,286	1,262	1,242
165	-	1,856	1,669	1,551	1,469	1,409	1,363	1,327	1,297	1,272	1,251
170	-	1,902	1,700	1,575	1,489	1,425	1,377	1,339	1,308	1,282	1,260
175	-	1,950	1,733	1,599	1,508	1,442	1,391	1,351	1,318	1,291	1,269
180	-	-	1,766	1,624	1,528	1,458	1,405	1,363	1,329	1,301	1,278
185	-	-	1,801	1,650	1,548	1,475	1,420	1,376	1,341	1,311	1,287
190	-	-	1,838	1,677	1,569	1,492	1,434	1,389	1,352	1,322	1,296
195	-	-	1,876	1,704	1,591	1,510	1,449	1,402	1,363	1,332	1,305
200	-	-	1,915	1,733	1,613	1,528	1,464	1,415	1,375	1,342	1,315
205	-	-	1,957	1,762	1,636	1,546	1,480	1,428	1,387	1,353	1,324
210	-	-	-	1,792	1,659	1,565	1,496	1,442	1,399	1,363	1,334
215	-	-	-	1,824	1,683	1,584	1,512	1,455	1,411	1,374	1,344
220	-	-	-	1,856	1,707	1,604	1,528	1,469	1,423	1,385	1,353
225	-	-	-	1,890	1,733	1,624	1,545	1,484	1,435	1,396	1,363
230	-	-	-	1,926	1,759	1,645	1,562	1,498	1,448	1,407	1,373
235	-	-	-	1,962	1,785	1,666	1,579	1,513	1,461	1,419	1,383
240	-	-	-	-	1,813	1,688	1,597	1,528	1,474	1,430	1,394
245	-	-	-	-	1,842	1,710	1,615	1,543	1,487	1,442	1,404
250	-	-	-	-	1,871	1,733	1,633	1,559	1,500	1,453	1,415

Hub Outside Diameter

$\begin{gathered} P_{N} \\ N / m m^{2} \end{gathered}$	K-Factor for hubtype with $\mathrm{C}=0,8$										
	Yield strength hubmaterial ($\mathrm{N} / \mathrm{mm}^{2}$)										
	150	180	210	240	270	300	330	360	390	420	450
50	1,315	1,254	1,213	1,184	1,161	1,144	1,130	1,119	1,109	1,101	1,094
55	1,353	1,284	1,237	1,204	1,179	1,160	1,144	1,131	1,120	1,111	1,104
60	1,394	1,315	1,262	1,225	1,197	1,176	1,158	1,144	1,132	1,122	1,114
65	1,436	1,347	1,288	1,247	1,216	1,192	1,173	1,157	1,144	1,133	1,124
70	1,481	1,380	1,315	1,269	1,235	1,208	1,187	1,170	1,156	1,144	1,134
75	1,528	1,415	1,342	1,291	1,254	1,225	1,202	1,184	1,168	1,155	1,144
80	1,578	1,451	1,370	1,315	1,274	1,242	1,218	1,197	1,181	1,166	1,154
85	1,631	1,489	1,400	1,339	1,294	1,260	1,233	1,211	1,193	1,178	1,165
90	1,688	1,528	1,430	1,363	1,315	1,278	1,249	1,225	1,206	1,190	1,176
95	1,748	1,569	1,461	1,389	1,336	1,296	1,265	1,240	1,219	1,201	1,186
100	1,813	1,613	1,494	1,415	1,358	1,315	1,281	1,254	1,232	1,213	1,197
105	1,883	1,659	1,528	1,442	1,380	1,334	1,298	1,269	1,245	1,225	1,208
110	1,960	1,707	1,563	1,469	1,403	1,353	1,315	1,284	1,259	1,237	1,220
115	2,043	1,759	1,600	1,498	1,427	1,373	1,332	1,299	1,272	1,250	1,231
120	2,135	1,813	1,639	1,528	1,451	1,394	1,350	1,315	1,286	1,262	1,242
125	2,237	1,871	1,679	1,559	1,476	1,415	1,368	1,331	1,300	1,275	1,254
130	2,350	1,934	1,722	1,591	1,502	1,436	1,386	1,347	1,315	1,288	1,266
135	2,479	2,000	1,766	1,624	1,528	1,458	1,405	1,363	1,329	1,301	1,278
140	2,626	2,073	1,813	1,659	1,555	1,481	1,424	1,380	1,344	1,315	1,290
145	2,798	2,151	1,863	1,695	1,584	1,504	1,444	1,397	1,359	1,328	1,302
150	-	2,237	1,915	1,733	1,613	1,528	1,464	1,415	1,375	1,342	1,315
155	-	2,330	1,971	1,772	1,643	1,553	1,485	1,433	1,391	1,356	1,327
160	-	2,434	2,031	1,813	1,675	1,578	1,506	1,451	1,407	1,370	1,340
165	-	2,550	2,094	1,856	1,707	1,604	1,528	1,469	1,423	1,385	1,353
170	-	2,680	2,163	1,902	1,741	1,631	1,550	1,489	1,440	1,400	1,367
175	-	2,829	2,237	1,950	1,776	1,659	1,573	1,508	1,457	1,415	1,380
180	-	-	2,316	2,000	1,813	1,688	1,597	1,528	1,474	1,430	1,394
185	-	-	2,403	2,054	1,852	1,717	1,621	1,548	1,492	1,446	1,408
190	-	-	2,499	2,111	1,892	1,748	1,646	1,569	1,510	1,461	1,422
195	-	-	2,604	2,172	1,934	1,780	1,672	1,591	1,528	1,478	1,436
200	-	-	2,721	2,237	1,978	1,813	1,698	1,613	1,547	1,494	1,451
205	-	-	2,852	2,306	2,024	1,848	1,726	1,636	1,566	1,511	1,466
210	-	-	-	2,381	2,073	1,883	1,754	1,659	1,586	1,528	1,481
215	-	-	-	2,462	2,124	1,921	1,783	1,683	1,606	1,546	1,496
220	-	-	-	2,550	2,179	1,960	1,813	1,707	1,627	1,563	1,512
225	-	-	-	2,646	2,237	2,000	1,844	1,733	1,648	1,582	1,528
230	-	-	-	2,752	2,298	2,043	1,877	1,759	1,670	1,600	1,544
235	-	-	-	2,869	2,364	2,088	1,910	1,785	1,692	1,619	1,561
240	-	-	-	-	2,434	2,135	1,945	1,813	1,715	1,639	1,578
245	-	-	-	-	2,510	2,184	1,982	1,842	1,738	1,659	1,595
250	-	-	-	-	2,592	2,237	2,020	1,871	1,763	1,679	1,613

Hub Outside Diameter

$\begin{gathered} P_{N} \\ N / m m^{2} \end{gathered}$	K-Factor for hubtype with $\mathrm{C}=1,0$										
	Yield strength hubmaterial ($\mathrm{N} / \mathrm{mm}^{2}$)										
	150	180	210	240	270	300	330	360	390	420	450
50	1,415	1,331	1,275	1,236	1,207	1,184	1,165	1,151	1,138	1,128	1,119
55	1,469	1,372	1,308	1,263	1,230	1,204	1,184	1,167	1,153	1,141	1,131
60	1,528	1,415	1,342	1,291	1,254	1,225	1,202	1,184	1,168	1,155	1,144
65	1,591	1,460	1,378	1,321	1,279	1,247	1,221	1,201	1,184	1,169	1,157
70	1,659	1,508	1,415	1,351	1,304	1,269	1,241	1,218	1,199	1,184	1,170
75	1,733	1,559	1,453	1,382	1,331	1,291	1,261	1,236	1,215	1,198	1,184
80	1,813	1,613	1,494	1,415	1,358	1,315	1,281	1,254	1,232	1,213	1,197
85	1,902	1,671	1,537	1,449	1,386	1,339	1,302	1,273	1,248	1,228	1,211
90	2,000	1,733	1,582	1,484	1,415	1,363	1,323	1,291	1,265	1,244	1,225
95	2,111	1,799	1,629	1,520	1,445	1,389	1,345	1,311	1,283	1,259	1,240
100	2,237	1,871	1,679	1,559	1,476	1,415	1,368	1,331	1,300	1,275	1,254
105	2,381	1,950	1,733	1,599	1,508	1,442	1,391	1,351	1,318	1,291	1,269
110	2,550	2,036	1,789	1,641	1,542	1,469	1,415	1,372	1,337	1,308	1,284
115	2,752	2,131	1,850	1,686	1,577	1,498	1,439	1,393	1,356	1,325	1,299
120	3,000	2,237	1,915	1,733	1,613	1,528	1,464	1,415	1,375	1,342	1,315
125	3,317	2,355	1,986	1,782	1,651	1,559	1,490	1,437	1,395	1,360	1,331
130	3,742	2,490	2,062	1,835	1,691	1,591	1,517	1,460	1,415	1,378	1,347
135	4,359	2,646	2,145	1,890	1,733	1,624	1,545	1,484	1,435	1,396	1,363
140	5,386	2,829	2,237	1,950	1,776	1,659	1,573	1,508	1,457	1,415	1,380
145	7,682	3,048	2,337	2,014	1,823	1,695	1,603	1,533	1,478	1,434	1,397
150	-	3,317	2,450	2,082	1,871	1,733	1,633	1,559	1,500	1,453	1,415
155	-	3,661	2,577	2,156	1,923	1,772	1,665	1,585	1,523	1,474	1,433
160	-	4,124	2,721	2,237	1,978	1,813	1,698	1,613	1,547	1,494	1,451
165	-	4,796	2,887	2,324	2,036	1,856	1,733	1,641	1,571	1,515	1,469
170	-	5,917	3,083	2,421	2,098	1,902	1,768	1,671	1,596	1,537	1,489
175	-	8,427	3,317	2,527	2,165	1,950	1,806	1,701	1,622	1,559	1,508
180	-	-	3,606	2,646	2,237	2,000	1,844	1,733	1,648	1,582	1,528
185	-	-	3,975	2,780	2,314	2,054	1,885	1,765	1,675	1,605	1,548
190	-	-	4,473	2,933	2,398	2,111	1,928	1,799	1,703	1,629	1,569
195	-	-	5,197	3,110	2,490	2,172	1,973	1,835	1,733	1,654	1,591
200	-	-	6,404	3,317	2,592	2,237	2,020	1,871	1,763	1,679	1,613
205	-	-	9,111	3,566	2,704	2,306	2,069	1,910	1,794	1,705	1,636
210	-	-	-	3,873	2,829	2,381	2,122	1,950	1,826	1,733	1,659
215	-	-	-	4,267	2,970	2,462	2,177	1,992	1,860	1,760	1,683
220	-	-	-	4,796	3,131	2,550	2,237	2,036	1,895	1,789	1,707
225	-	-	-	5,568	3,317	2,646	2,300	2,082	1,931	1,819	1,733
230	-	-	-	6,856	3,536	2,752	2,367	2,131	1,969	1,850	1,759
235	-	-	-	9,747	3,799	2,869	2,439	2,182	2,009	1,882	1,785
240	-	-	-	-	4,124	3,000	2,517	2,237	2,050	1,915	1,813
245	-	-	-	-	4,539	3,148	2,601	2,294	2,093	1,950	1,842
250	-	-	-	-	5,100	3,317	2,693	2,355	2,139	1,986	1,871

TAS 131

Used symbols

d	[mm]	Shaft diameter
D	[mm]	Hub inside diameter
D_{1}	[mm]	Diameter of the bush
$M_{\text {t }}$	[Nm]	Max. transmittable torque $\quad \mathrm{F}_{\mathrm{ax}}=0$
$F_{a x}$	[kN]	Max. transmittable axial force $M_{t}=0$
p_{w}	[$\mathrm{N} / \mathrm{mm}^{2}$]	Average pressure on the shaft
p_{N}	[$\mathrm{N} / \mathrm{mm}^{2}$]	Average pressure on the hub
L	[mm]	Distance of the pressure ring
L,	[mm]	Width of the locking device without screws
L_{2}	[mm]	Width of the locking device with screws
z		Number of clamping screws
S		Size of the clamping screws
$M_{\text {A }}$	[Nm]	Tightening torque of the clamping screws

Recommended tolerances \& surfaces

Pos.	Designation
1	Sleeve
2	Distance ring
3	Pressure ring
4	Screw

Bending loads

Bending moment (share)
Bending angle

MB max $=0,35$ * Mt
max. 5'

More properties

- no axial displacement during assembly
- good self-centering
- high self-locking

TAS 131

$\underset{\mathrm{mm}}{\boldsymbol{d}}$		$\underset{\mathrm{mm}}{\boldsymbol{D}}$	$\begin{aligned} & \boldsymbol{D}_{1} \\ & \mathrm{~mm} \end{aligned}$	M_{t} Nm	$\begin{aligned} & \boldsymbol{F}_{a x} \\ & \mathrm{kN} \end{aligned}$	p_{w} $\mathrm{N} / \mathrm{mm}^{2}$	p_{N} $\mathrm{N} / \mathrm{mm}^{2}$	$\begin{gathered} \mathbf{Z} \\ \text { Pcs. } \end{gathered}$		$\begin{gathered} \boldsymbol{M}_{\mathrm{A}} \\ \mathrm{Nm} \end{gathered}$	$\underset{\mathrm{mm}}{\boldsymbol{L}}$	$\begin{aligned} & L_{1} \\ & \mathrm{~mm} \end{aligned}$	$\begin{aligned} & L_{2} \\ & \mathrm{~mm} \end{aligned}$	Weight kg
20	x	47	53	320	33	170	70	6	M 6×25	17	31	42	48	0,42
22	x	47	53	360	33	153	70	6	M 6×25	17	31	42	48	0,39
24	x	50	56	390	33	144	70	6	M 6×25	17	31	42	48	0,43
25	x	50	56	400	33	138	70	6	M 6×25	17	31	42	48	0,42
28	x	55	61	450	33	120	60	6	M 6×25	17	31	42	48	0,51
30	x	55	61	490	33	112	60	6	M 6×25	17	31	42	48	0,48
32	x	60	66	690	43	136	70	8	M 6×25	17	31	42	48	0,57
35	x	60	66	750	43	124	70	8	M 6×25	17	31	42	48	0,54
38	x	65	71	820	43	120	70	8	M 6×25	17	31	42	48	0,63
40	x	65	71	860	43	113	70	8	M 6×25	17	31	42	48	0,58
42	x	75	81	1300	60	126	70	6	M 8×30	41	35	51	59	1,02
45	x	75	81	1400	60	118	70	6	M 8×30	41	35	51	59	0,99
48	x	80	86	1900	80	150	90	8	M 8×30	41	35	51	59	1,10
50	x	80	86	2000	80	144	90	8	M 8×30	41	35	51	59	1,08
55	x	85	91	2200	80	136	90	8	M 8×30	41	35	51	59	1,16
60	x	90	96	2400	80	120	80	8	M 8×30	41	35	51	59	1,24
65	x	95	101	2600	80	105	70	8	M 8×30	41	35	51	59	1,33
70	x	110	119	4600	130	126	80	8	M 10×30	83	46	61	71	2,29
75	x	115	124	5000	130	120	80	8	M 10×30	83	46	61	71	2,41
80	x	120	129	5200	130	107	70	8	M 10×30	83	46	61	71	2,56
85	x	125	134	7000	170	132	90	10	M 10×30	83	46	61	71	2,67
90	x	130	139	7400	170	117	80	10	M 10×30	83	46	61	71	2,80
95	x	135	144	7800	170	114	80	10	M 10×30	83	46	61	71	2,93
100	x	145	155	9800	190	115	80	8	M 12×35	145	52	68	80	4,10
110	x	155	165	10700	190	101	70	8	M 12×35	145	52	68	80	4,40
120	x	165	175	14600	240	122	90	10	M 12×35	145	52	68	80	4,72
130	x	180	188	19000	300	137	100	12	M 12×35	145	52	68	80	5,74
140	x	190	199	23000	330	123	90	10	M 14×40	230	58	76	90	6,92
150	x	200	209	30000	400	136	100	12	M 14x 40	230	58	76	90	7,24
160	x	210	219	32000	400	132	100	12	M 14x40	230	58	76	90	7,76
170	x	225	134	39000	460	145	110	14	M 14×40	230	58	76	90	8,98
180	x	235	244	41000	460	133	100	14	M 14x40	230	58	76	90	9,50
190	x	250	259	46400	488	137	104	15	M 14×40	230	58	76	90	11,10
200	x	260	269	48800	488	131	100	15	M 14×40	230	58	76	90	11,70
220	x	285	294	59900	544	103	79	12	M 16×50	360	72	98	114	18,30

