


### Safety brake for profiled rail guides

ROBA®-guidestop Type 384\_.\_\_0\_\_ Sizes 35 – 65

Issue status 2021-08



# Translation of the Original Operational Instructions B.384.EN

### © Copyright by mayr® – power transmission

All rights reserved.

Reprints and copies – even extracts – are only permitted with the consent of the manufacturer.

### (B.384.EN)

### **Contents**

| 1 General Guidelines                                                                                       | . 3      |
|------------------------------------------------------------------------------------------------------------|----------|
| 1.1 Definition of Terms                                                                                    | 3        |
| 2 Safety                                                                                                   | 4        |
| <ul><li>2.1 Safety and Guideline Signs</li><li>2.2 General Guidelines</li></ul>                            | 4<br>4   |
| 2.2.1 Personnel Requirements                                                                               | 4        |
| 2.3 Intended Use                                                                                           | 5        |
| <ul><li>2.4 Handling</li><li>2.5 User-implemented Protective Measures</li></ul>                            | 5<br>5   |
| <ul><li>2.5 User-implemented Protective Measures</li><li>2.6 Dimensioning Other Machine Elements</li></ul> | 5<br>5   |
| 3 Legal Provisions                                                                                         | 6        |
| 3.1 Standards, Directives and Regulations Used                                                             | 6        |
| 3.2 Liability                                                                                              | 6        |
| 3.3 Guarantee                                                                                              | 6        |
| <ul><li>3.4 Guidelines</li><li>3.5 Identification/ Type Tag</li></ul>                                      | 6        |
| 3.5 Identification/ Type Tag 3.5.1 Order Number                                                            | 7<br>7   |
| 4 Product Description                                                                                      | •        |
| 4.1 Scope of Delivery / State of Delivery                                                                  | 8        |
| 4.2 Function                                                                                               | 8        |
| 4.3 Views                                                                                                  | 9        |
| 4.4 Parts List                                                                                             | 10       |
| 5 Technical Data                                                                                           | . 11     |
| 5.1 Guidelines                                                                                             | 11       |
| 5.1.1 Application Conditions 5.1.2 Ambient Temperature                                                     | 11<br>11 |
| 5.1.3 Protection                                                                                           | 11       |
| 5.1.4 Noise Emissions                                                                                      | 11       |
| 5.1.5 Installation Position                                                                                | 11       |
| 5.1.6 Pre-requisites for Product Application                                                               | 11       |
| 5.2 Technical Data<br>5.2.1 Type 3840.0 _ 0 standard                                                       | 12<br>12 |
| 5.2.2 Type 3841.0 _ 0 standard<br>5.2.2 Type 3841.0 _ 0 short design                                       | 13       |
| 5.2.3 Dimensions Profiled Rail                                                                             | 14       |
| 6 Intended Use                                                                                             | .15      |
| 6.1 Guidelines for Application                                                                             | 15       |
| 6.2 Limits                                                                                                 | 15       |

| <ul> <li>6.3 Reasonably Foreseeable Misuse</li> <li>6.4 Duration of Use</li> <li>6.5 Brake Dimensioning</li> <li>6.5.1 Calculation Example (Dynamic Braking)</li> </ul> | 15<br>15<br>16<br>17 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 6.5.2 Switching Times                                                                                                                                                   | 17                   |
| 7 Storage                                                                                                                                                               | 18                   |
| 7.1 Brake Storage                                                                                                                                                       | 18                   |
| 8 Installation                                                                                                                                                          | 18                   |
| 8.1 Installation Conditions                                                                                                                                             | 18                   |
| 8.1.1 General                                                                                                                                                           | 18                   |
| 8.1.2 Profiled rail                                                                                                                                                     | 20                   |
| <ul><li>8.1.3 Controls</li><li>8.2 Installation (Figs. 1 and 2)</li></ul>                                                                                               | 21<br>22             |
| 8.2.1 Pre-requisites                                                                                                                                                    | 22                   |
| 8.2.2 Preparation                                                                                                                                                       | 22                   |
| 8.2.3 Bleed                                                                                                                                                             | 22                   |
| 8.2.4 Installation Procedure                                                                                                                                            | 22                   |
| 9 Options                                                                                                                                                               | 23                   |
| 9.1 Switching Condition Monitoring (NO Contact)                                                                                                                         | 23                   |
| 10 Initial Operation                                                                                                                                                    | 24                   |
| 10.1 Brake Inspection (before initial operation)                                                                                                                        | 24                   |
| 10.2 Brake Test (Static)                                                                                                                                                | 24                   |
| 10.2.1 (Static) Brake Inspection                                                                                                                                        | 24                   |
| 10.3 Brake Inspection (During Operation) 10.3.1 Regular Function Inspection (static)                                                                                    | 24<br>24             |
| ,                                                                                                                                                                       | 2 <del>4</del>       |
| 11 Maintenance / Inspection / Switching Frequency                                                                                                                       | 25                   |
| • •                                                                                                                                                                     | 25<br>25             |
| <ul><li>11.1 Switching Frequency</li><li>11.2 Inspection</li></ul>                                                                                                      | 25<br>25             |
| 11.3 Maintenance                                                                                                                                                        | 25                   |
| 11.4 Cleaning                                                                                                                                                           | 26                   |
| 12 De-installation                                                                                                                                                      | 26                   |
| 13 Disposal                                                                                                                                                             | 26                   |
| 14 Malfunctions / Breakdowns                                                                                                                                            |                      |
| - manandiono, bioaraomioniminimini                                                                                                                                      |                      |

(B.384.EN)

### Please read these Operational Instructions carefully and follow them accordingly!

Ignoring these Instructions may lead to malfunctions or to brake failure, resulting in damage to other parts. These Operational Instructions are part of the brake delivery.

Please keep them handy and near to the brake at all times.

### 1 General Guidelines

### 1.1 Definition of Terms

| Term                    | Meaning                                                                                                                                               |
|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| ROBA®-guidestop         | Hydraulically-actuated safety brakes as components for holding and decelerating of moved machine parts.                                               |
| Nominal holding force F | The theoretical nominal holding force assigned to the designation. The nominal holding force lies within the stated nominal holding force tolerances. |
| Load mass               | Designation of the weight, which must be held by the brake.                                                                                           |



(B.384.EN)

### 2 Safety

### 2.1 Safety and Guideline Signs

| Symbol   | Signal word    | Meaning                                                                                                                            |
|----------|----------------|------------------------------------------------------------------------------------------------------------------------------------|
| <u>^</u> | DANGER         | Designates a directly pending danger. If not avoided, death or severe injuries will be the consequence.                            |
| <u>^</u> | WARNING        | Designates a possibly hazardous situation. If not avoided, death or severe injuries will be the consequence.                       |
| <u>^</u> | CAUTION        | Designates a hazardous situation. If not avoided, slight or minor injuries can be the consequence.                                 |
|          | ATTENTION      | Possible property damage can be the consequence.                                                                                   |
| i        | Please Observe | Designates tips for application and other particularly useful information. Not a signal word for dangerous or damaging situations. |

#### 2.2 General Guidelines

Brakes may generate further risks, among other things:





Severe injury to people and damage to objects may result if:

- ☐ the brake is used incorrectly.
- ☐ the brake is modified.
- the relevant standards for safety and / or installation conditions are ignored.

### 2.2.1 Personnel Requirements

To prevent injury or damage, only professionals and specialists are allowed to work on the components. They must be familiar with the dimensioning, transport, installation, initial operation, maintenance and disposal according to the relevant standards and regulations.



Before product installation and initial operation, please read the Installation and Operational Instructions carefully and observe the Safety Regulations. Incorrect operation can cause injury or damage. At the time these Installation and Opera-

tional Instructions go to print, the hydraulic brakes accord with the known technical specifications and are operationally safe at the time of delivery.

☐ Technical data and specifications (Type tags and documentation) must be followed. General Guideline:

### **General Guideline:**

During the risk assessment required when designing the machine or system, the dangers involved must be evaluated and removed by taking appropriate protective measures in accordance with the Machinery Directive 2006/42/EC.

Brakes for safety-related applications are to be installed singly or as redundant devices in accordance with the required category, in order to fulfil the required Performance Level (PL<sub>r</sub>) acc. EN ISO 13849. This is in principle the task of the system manufacturer.



(B.384.EN)

### 2.3 Intended Use

mayr®-brakes are for use in machines and systems and must only be used in the situations for which they are ordered and confirmed. Using them for any other purpose is not allowed.

ROBA®-guidestop brakes by *mayr*® are used for holding and deceleration of profiled rails.

ROBA®-guidestop brakes by *mayr*® prevent inadvertent dropping or crashing of gravity-loaded axes.

 Not suitable for operation in areas where there is a danger of explosion

### 2.4 Handling

**Before installation**, the brake must be inspected and found to be in proper condition (visual inspection). The following are not considered as being representative of a proper condition:

- External damage
- External oiling
- Outer contamination

The brake function must be inspected both **once attachment has taken place** as well as **after longer system downtimes**.

### 2.5 User-implemented Protective Measures

- Please cover moving parts to protect against injury through seizure.
- Install additional protective measures against corrosion if the brake is subject to extreme ambient conditions or is installed in open air conditions, unprotected from the weather.

### 2.6 Dimensioning Other Machine Elements



The effects of the maximum and minimum braking force on the other machine components must be observed in order to provide sufficient dimensioning. The ROBA®-guidestop has (at room temperature) a maximum braking force of 2.5 x brake nominal holding force and a minimum braking force of 1 x brake nominal holding force.

If other brakes are positioned behind the ROBA®-guidestop, and if the braking times of the different brakes overlap, the loads will add up.



(B.384.EN)

### 3 Legal Provisions

### 3.1 Standards, Directives and Regulations Used

(also to be observed during installation and operation)

EN ISO 4413 General rules and safety

requirements for hydraulic systems and their compo-

nents

EN ISO 12100 Safety of machinery - Gen-

eral principles for design - Risk assessment and risk

reduction

EN ISO 13849-1 Safety of machinery –

Safety related parts of con-

trol systems

### 3.3 Guarantee

- □ The guarantee conditions correspond with the Chr. Mayr GmbH + Co. KG sales and delivery conditions (www.mayr.com → Service → General Terms and Conditions)
- Mistakes or deficiencies are to be reported to mayr
  at once!

### 3.2 Liability

The information, guidelines and technical data in these documents were up to date at the time of printing. Demands on previously delivered brakes are not valid. Liability for damage and operational malfunctions will not be taken if:

| the Installation and Operational Instructions are ig- |
|-------------------------------------------------------|
| nored or neglected,                                   |

- ☐ the brakes are used inappropriately.
- □ the brakes are modified.
- ☐ the brakes are worked on unprofessionally.
- □ the brakes are handled or operated incorrectly.

### 3.4 Guidelines



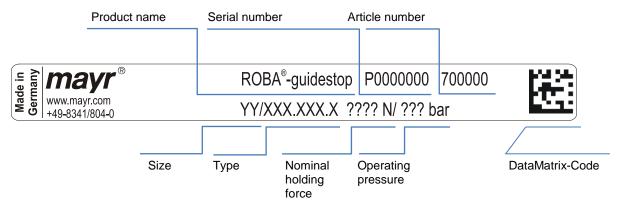
### Guidelines on the Machinery Directive (2006/42/EC)

The product is a component for installation into machines according to the Machinery Directive 2006/42/EC. The brakes can fulfil the specifications for safety-related applications in coordination with other elements. The type and scope of the required measures result from the machine risk analysis. The brake then becomes a machine component and the machine manufacturer assesses the conformity of the safety device to the directive

It is forbidden to start use of the product until you have ensured that the machine accords with the regulations stated in the directive.

### **Guidelines on the ATEX Directive**

Without a conformity evaluation, this product is not suitable for use in areas where there is a high danger of explosion.


For application of this product in areas where there is a high danger of explosion, it must be classified and marked according to directive 2014/34/EU.



(B.384.EN)

### 3.5 Identification/ Type Tag

mayr® components are clearly marked and described on the Type tag:



#### Serial number

| Year | Code | Year | Code |
|------|------|------|------|
| 2000 | Α    | 2011 | N    |
| 2001 | В    | 2012 | Р    |
| 2002 | С    | 2013 | R    |
| 2003 | D    | 2014 | S    |
| 2004 | Е    | 2015 | Т    |
| 2005 | F    | 2016 | U    |
| 2006 | Н    | 2017 | V    |
| 2007 | J    | 2018 | W    |
| 2008 | K    | 2019 | X    |
| 2009 | L    | 2020 | Υ    |
| 2010 | M    | 2021 | Z    |
|      |      |      |      |

### 3.5.1 Order Number

|       |                                                 |   |   |                  |     |  | Rai | il manuf                              | facturer Rail type                                                        |                   |           |        |                                                     |
|-------|-------------------------------------------------|---|---|------------------|-----|--|-----|---------------------------------------|---------------------------------------------------------------------------|-------------------|-----------|--------|-----------------------------------------------------|
|       |                                                 |   |   |                  |     |  |     |                                       | INA                                                                       | Α                 | 0         | see Ta | able                                                |
|       |                                                 |   |   | andard<br>design | 0 1 |  |     | Schne                                 | BOSCH<br>eberger<br>HIWIN<br>THK<br>Rollon<br>NSK<br>TN-SNR<br>IKO<br>SKF | B C D E F G H J M | 1 2       | 0 1    | Cable gland Standard (on the left) Optional (right) |
|       |                                                 | 3 | 8 | 4                |     |  | _   |                                       | 0                                                                         |                   | /         | _      |                                                     |
| Sizes |                                                 |   |   |                  |     |  | I   |                                       | Options                                                                   |                   | 1         |        |                                                     |
| 35    |                                                 |   |   |                  |     |  |     | 0                                     | Standard                                                                  | d (Basic          | Type)     |        |                                                     |
| to    | Brake unit 1                                    |   |   |                  |     |  |     | 1 with switching condition monitoring |                                                                           |                   |           |        |                                                     |
| 65    |                                                 |   |   |                  |     |  |     | 2 with wiper                          |                                                                           |                   |           |        |                                                     |
|       | 3 with switching condition monitoring and wiper |   |   |                  |     |  |     |                                       |                                                                           |                   | and wiper |        |                                                     |



(B.384.EN)

### 4 Product Description

### 4.1 Scope of Delivery / State of Delivery

- □ ROBA®-guidestop brake are manufacturer-assembled and ready for installation.
- ☐ The ROBA®-guidestop is set to the nominal holding force stipulated in the order.
- ☐ Please observe the Type tag.
- Please check the state of delivery immediately! mayr® will take no responsibility for belated complaints. Please report transport damage immediately to the supplier. Please report incomplete delivery and obvious defects immediately to the manufacturer.

### ATTEN-TION

### The brake could be damaged

Removal of the transportation lock (10) in de-pressurized condition of the brake leads to damage.

Remove the transportation lock (10) (red screw head) only in pressurized condition.

### Caution



Please observe the own weight of the brake

The brake may drop during lifting / transport.

The consequences may be crush injuries and impact injuries.

### 4.2 Function

The spring-loaded, enclosed **ROBA**®-guidestop (Type 384\_.0\_0\_), which can be opened hydraulically, clamps a profiled rail steplessly and backlash-free.

The  ${\bf ROBA}^{\tiny @}\text{-guidestop}$  (Type 384\_.1\_0\_ \_) , which can be opened hydraulically, clamps and brakes a profiled rail steplessly and backlash-free.

Due to the spring-loaded system , the fail-safe principle can be guaranteed, the ROBA®-guidestop works as a safety brake.

The required operating pressure is stated on the Type tag.



### **Please Observe!**

The full clamping force can only be reached when the brake is pressureless (<0.5 bar).

In case the operating pressure is too low, the brake cannot be pressurized (opened) correctly.

The required operating pressure is stated on the Type tag.

To reliably query this, we recommend the use of pressure switches, see section 8.1.3

- Through pressurization of the ROBA®-guidestop with the required operating pressure, the clamping element of the brake is pressed against the cup spring. The profiled rail can be moved (Illustration 1).
- □ By pressure release the ROBA®-guidestop, the cup spring has an effect on the clamping element of the brake. The profiled rail is clamped (Illustration 2).

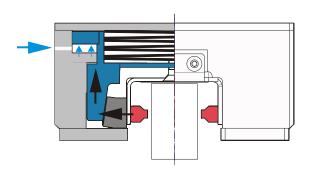



Illustration 1 Moveable profiled rail on pressurization

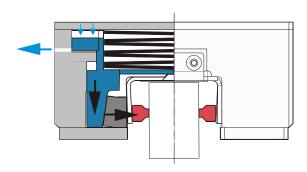



Illustration 2 Clamped profiled rail on pressure release



(B.384.EN)

### 4.3 Views

Type 3840.\_ \_ 0 \_ \_ standard

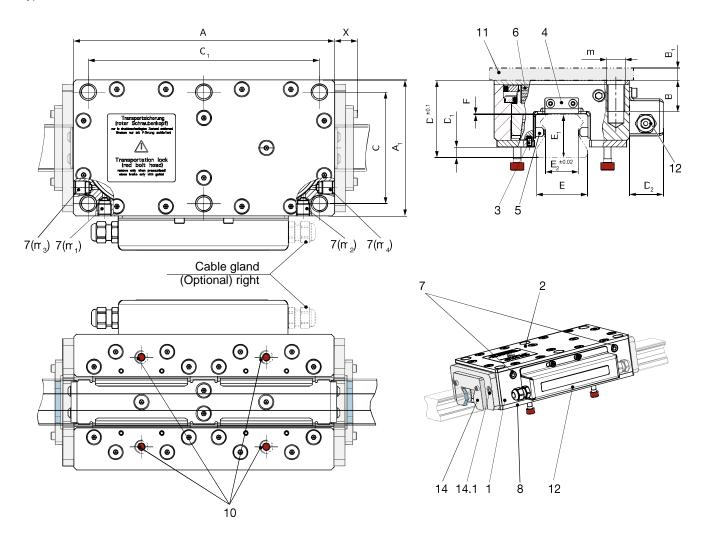
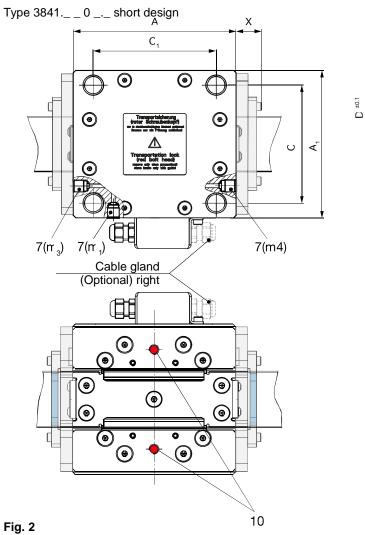
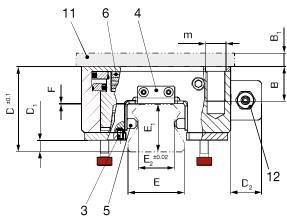
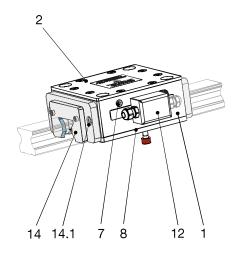






Fig. 1







### 4.4 Parts List

(Only use mayr® original parts)

| Item | Name                                                      |
|------|-----------------------------------------------------------|
| 1    | Cylinder housing                                          |
| 2    | Cylinder cover                                            |
| 3    | Ball point screw                                          |
| 4    | Carrier plate                                             |
| 5    | Brake shoe                                                |
| 6    | Cup springs                                               |
| 7    | Hydraulic connection                                      |
| 8    | Sealing cover                                             |
| 9    | Screw plug hydraulic connection (7) (not depicted)        |
| 10   | Transportation lock                                       |
| 11   | Mounting flange customer-side                             |
| 12   | Switching condition monitoring (option dependent on Type) |

| Item | Name                    |
|------|-------------------------|
| 12.1 | Proximity switch        |
| 12.2 | Hexagon nut             |
| 12.3 | Cover plate             |
| 12.4 | Cap screws              |
| 12.5 | Cable gland             |
| 13   | Type tag (not depicted) |
| 14   | Wiper (optional)        |
| 14.1 | Fixing screws wiper     |

(B.384.EN)

### 5 Technical Data

### 5.1 Guidelines

### 5.1.1 Application Conditions



The stated values are guideline values which have been determined in test facilities. It may be necessary to carry out your own tests for the intended

application. When dimensioning the brakes, please remember that installation situations, permitted friction work and braking distances as well as general ambient conditions can all affect the given values.

- Mounting dimensions and connection dimensions must be adjusted according to the size of the brake at the place of installation.
- Use of the brake in extreme environmental conditions or outdoors, directly exposed to the weather, is not permitted.
- ☐ The surfaces of the outer components have been phosphated manufacturer-side to form a basic corrosion protection.
- ☐ The provision of the required operating pressure must be guaranteed.

### 5.1.2 Ambient Temperature

### -10 °C up to +60 °C

The Technical Data refer to the stated temperature range.

#### 5.1.3 Protection

(mechanical) IP44: In installed condition, protected against solid foreign bodies >1 mm in diameter as well as protected against water spray from all directions.

#### 5.1.4 Noise Emissions

Normally no noise development

#### 5.1.5 Installation Position

The ROBA®-guidestop can be operated in any installation position.

### 5.1.6 Pre-requisites for Product Application

Compare the limit values stated in these operational instructions with the actual application, e.g.

- Pressure
- Clamping forces
- Braking distance
- Masses
- □ Temperatures etc.
- □ Pressure medium

(B.384.EN)

### 5.2 Technical Data

### 5.2.1 Type 3840.0 \_ 0 \_ \_ standard

| Technical Data           |               |                   | Size   |                                            |        |       |       |  |
|--------------------------|---------------|-------------------|--------|--------------------------------------------|--------|-------|-------|--|
| 1 <del>C</del> CIIIICai  | Data          |                   |        | 35                                         | 45     | 55    | 65    |  |
| Nominal ho               | lding force F |                   | [N]    | 10000                                      | 15000  | 20000 | 34000 |  |
|                          | Tolerance     | Type 3840.0       |        |                                            | 0% / + | 150%  |       |  |
|                          | Tolerance     | Type 3840.1       | _      |                                            | -20% / | +40%  |       |  |
| Weight                   |               |                   | [kg]   | 6                                          | 9      | 16    | 27    |  |
| Operating p              | roccuro       | min.              | [bar]  | 70                                         | 70     | 70    | 75    |  |
| Operating p              | i e s sui e   | max.              | [bar]  | 90                                         | 90     | 90    | 90    |  |
| Rigidity                 |               |                   | [N/µm] | 380                                        | 490    | 860   | 1000  |  |
| Maximum s                | liding speed  |                   | [m/s]  | 2                                          |        |       |       |  |
| Hydraulic co             | onnection     | Tightening torque | [Nm]   | 12                                         |        |       |       |  |
| m <sub>1</sub>           |               | Thread            |        | 1/8"                                       |        |       |       |  |
| Pressure me              | edium         |                   |        | Use hydraulic oil acc. DIN 51524-1:2006-04 |        |       |       |  |
| Absorption               | volume        |                   | [cm3]  | 14                                         | 21     | 34    | 48    |  |
| Ambient temperature [°C] |               |                   |        | -10 to +60                                 |        |       |       |  |
| Hexagon nut              |               | Tightening torque | [Nm]   |                                            | 2      | 2     |       |  |
|                          |               | Thread            |        | M5                                         |        |       |       |  |

| Dimensions       | Size    |                     |                         |         |  |  |  |  |  |  |
|------------------|---------|---------------------|-------------------------|---------|--|--|--|--|--|--|
| [mm]             | 35      | 45                  | 55                      | 65      |  |  |  |  |  |  |
| Α                | 192     | 225                 | 270                     | 325     |  |  |  |  |  |  |
| A1               | 100     | 120                 | 140                     | 170     |  |  |  |  |  |  |
| В                | 21.7    | 27.7                | 35.7                    | 43      |  |  |  |  |  |  |
| B1 <sup>1)</sup> | 10      | 15                  | 25                      | 35      |  |  |  |  |  |  |
| С                | 82      | 96                  | 110                     | 134     |  |  |  |  |  |  |
| C1               | 170     | 196                 | 240                     | 288     |  |  |  |  |  |  |
| D2               | 25      | 25                  | 25                      | 25      |  |  |  |  |  |  |
| E                | 34      | 45                  | 53                      | 63      |  |  |  |  |  |  |
| m                | 6 x M12 | 6 x M16             | 6 x M20                 | 6 x M24 |  |  |  |  |  |  |
| X                |         | Dimension depends o | n the rail manufacturer | ·       |  |  |  |  |  |  |

<sup>1)</sup> Required minimum thickness of the customer-side mounting flange (steel)

Dimension profiled rail see 5.2.3



(B.384.EN)

### 5.2.2 Type 3841.0 \_ 0 \_ \_ short design

| Technical Data             |               |                   | Size   |                                            |        |       |       |  |  |
|----------------------------|---------------|-------------------|--------|--------------------------------------------|--------|-------|-------|--|--|
| recillicar                 | Dala          |                   |        | 35                                         | 45     | 55    | 65    |  |  |
| Nominal ho                 | lding force F |                   | [N]    | 5000                                       | 7500   | 10000 | 17000 |  |  |
| <b>T</b> .                 |               | Type 3841.0       |        |                                            | 0%/+   | 150%  |       |  |  |
|                            | Tolerance     | Type 3841.1       |        |                                            | -20% / | +40%  |       |  |  |
| Weight                     |               |                   | [kg]   | 3.5                                        | 5.5    | 9     | 16    |  |  |
| Operating p                | roccuro       | min.              | [bar]  | 70                                         | 70     | 70    | 75    |  |  |
| Operating p                | ressure       | max.              | [bar]  | 90                                         | 90     | 90    | 90    |  |  |
| Rigidity                   |               |                   | [N/µm] | 380                                        | 490    | 860   | 1000  |  |  |
| Maximum sliding speed [m/s |               |                   | [m/s]  |                                            | 2      | 2     |       |  |  |
| Hydraulic co               | onnection     | Tightening torque | [Nm]   | 12                                         |        |       |       |  |  |
| m <sub>1</sub>             |               | Thread            |        | 1/8"                                       |        |       |       |  |  |
| Pressure me                | edium         |                   |        | Use hydraulic oil acc. DIN 51524-1:2006-04 |        |       |       |  |  |
| Absorption                 | volume        |                   | [cm3]  | 7 10.5                                     |        | 17    | 24    |  |  |
| Ambient temperature [°C]   |               |                   |        | -10 to +60                                 |        |       |       |  |  |
| Hexagon nut                |               | Tightening torque | [Nm]   |                                            | 2      | 2     |       |  |  |
|                            |               | Thread            |        |                                            | N      | 15    |       |  |  |

| Dimensions       | Size    |                     |                         |         |  |  |  |  |
|------------------|---------|---------------------|-------------------------|---------|--|--|--|--|
| [mm]             | 35      | 45                  | 55                      | 65      |  |  |  |  |
| Α                | 115     | 130                 | 155                     | 190     |  |  |  |  |
| A1               | 100     | 120                 | 140                     | 170     |  |  |  |  |
| В                | 21.7    | 27.7                | 35.7                    | 43      |  |  |  |  |
| B1 <sup>1)</sup> | 10      | 15                  | 25                      | 35      |  |  |  |  |
| С                | 82      | 96                  | 110                     | 134     |  |  |  |  |
| C1               | 92      | 98                  | 125                     | 152     |  |  |  |  |
| D2               | 25      | 25                  | 25                      | 25      |  |  |  |  |
| E                | 34      | 45                  | 53                      | 63      |  |  |  |  |
| m                | 4 x M12 | 4 x M16             | 4 x M20                 | 4 x M24 |  |  |  |  |
| X                |         | Dimension depends o | n the rail manufacturer |         |  |  |  |  |

<sup>1)</sup> Required minimum thickness of the customer-side mounting flange (steel)

Dimension profiled rail see 5.2.3



### 5.2.3 Dimensions Profiled Rail

| Dimensions [mm] |     |    | Sizes                   |                                   |      |      |      |     |      |      |        |      |      |   |
|-----------------|-----|----|-------------------------|-----------------------------------|------|------|------|-----|------|------|--------|------|------|---|
| Rail manufac-   |     |    |                         | 35 45                             |      |      |      |     |      |      |        |      |      |   |
| turer           |     | Kā | ail type                | E1                                | E2   | D    | D1   | F   | E1   | E2   | D      | D1   | F    |   |
|                 |     | 0  | TSX-E                   | 30                                | 21.5 | 57   | 6.3  | 1   | 38   | 27   | 68.5   | 9.5  | 1    |   |
| INA             | Α   | 1  | TKSD                    | 29.7                              | 26.8 | 56.7 | 6.0  | 1   | 37.2 | 36.7 | 67.7   | 8.7  | 1    |   |
|                 |     | 2  | TKVD                    | 27                                | 22.2 | 56   | 5.3  | 3   | 34.2 | 29.6 | 67.2   | 8.2  | 3.5  |   |
|                 |     | 0  | R1805/6/7,<br>R1845/6/7 | 30.8                              | 21   | 57.8 | 7.1  | 1   | 38.8 | 25   | 69.3   | 10.3 | 1    |   |
| Bosch           | В   |    | 1                       | R1605/6/7,<br>R1645/7,<br>R2045/7 | 31.9 | 23.5 | 58.9 | 8.2 | 1    | 39.9 | 29     | 70.3 | 11.3 | 1 |
| Schneeberger    | С   | 0  | MR                      | 32.0                              | 21   | 59   | 8.2  | 1   | 40   | 29   | 70.5   | 11.5 | 1    |   |
| HIWIN           | D   | 0  | RG                      | 30.2                              | 22   | 57.2 | 6.5  | 1   | 38   | 30   | 68.5   | 9.5  | 1    |   |
| IIIVVIIV        | ט   | 1  | HG                      | 29                                | 23.8 | 56.0 | 5.3  | 1   |      | not  | availa | able |      |   |
| THK             | Е   | 0  | SRG                     | 30                                | 23   | 57   | 6.3  | 1   | 37   | 32   | 69     | 10   | 2.5  |   |
| IIIK            | _   | 1  | SHS                     | 26                                | 27   | 54.5 | 3.8  | 2.5 | 32   | 37.5 | 66     | 7    | 4.5  |   |
| Rollon          | F   | 0  | MR                      | 29                                | 25   | 56   | 6    | 1   | 38   | 34   | 68.5   | 9.5  | 1    |   |
| NSK             | G   | 0  | RA                      | 31                                | 21.4 | 58   | 7.3  | 1   | 38   | 28.5 | 68.5   | 9.5  | 1    |   |
| NTN-SNR         | Н   | 0  | BG/LGB                  | 26                                | 27   | 54.5 | 3.8  | 2.5 | 31.1 | 37.5 | 65     | 6    | 4.4  |   |
| IKO             | J   | 0  | LRX/MX                  | 32                                | 20   | 59   | 8.3  | 1   | 38   | 28   | 68.5   | 9.5  | 1    |   |
| SKF             | М   | 0  | LLU                     | 32                                | 21   | 59   | 8.3  | 1   | 39.8 | 29   | 70.3   | 11.3 | 1    |   |
|                 | IVI | 1  | LLR                     | 31.8                              | 24.9 | 58.8 | 8.1  | 1   | 39.8 | 33   | 70.3   | 11.3 | 1    |   |

| Dimensions [mm] |      |    | Sizes                             |       |      |        |               |     |               |      |        |      |     |
|-----------------|------|----|-----------------------------------|-------|------|--------|---------------|-----|---------------|------|--------|------|-----|
| Rail manufac-   |      |    |                                   | 55 65 |      |        |               |     |               |      |        |      |     |
| turer           |      | Ka | ail type                          | E1    | E2   | D      | D1            | F   | E1            | E2   | D      | D1   | F   |
|                 |      | 0  | TSX-E                             | 45    | 31.8 | 83.8   | 11.5          | 1   | 53.8          | 38.2 | 97.5   | 10.8 | 1   |
| INA             | Α    | 1  | TKSD                              |       | not  | availa | ble           |     |               | not  | availa | able |     |
|                 |      | 2  | TKVD                              | 41.5  | 35.8 | 85.0   | 12.7          | 5.7 |               | not  | availa | able |     |
|                 |      | 0  | R1805/6/7,<br>R1845/6/7           | 47.6  | 31   | 86.4   | 14.1          | 1   | 57.9          | 36.2 | 101.6  | 14.9 | 1   |
| Bosch           | В    | 1  | R1605/6/7,<br>R1645/7,<br>R2045/7 | 47.9  | 34.6 | 86.7   | 14.4          | 1   | 59.9          | 40   | 103.5  | 16.8 | 1   |
| Schneeberger    | С    | 0  | MR                                | 48    | 35   | 86.8   | 14.5          | 1   | 58            | 43   | 101.7  | 15   | 1   |
| HIWIN           | D    | 0  | RG                                | 44    | 38   | 82.8   | 10.5          | 1   | 53            | 44   | 96.7   | 10   | 1   |
| LIIVVIIN        | ט    | 1  | HG                                |       | not  | availa | ble           |     | not available |      |        |      |     |
| тнк             | E    | 0  | SRG                               | 43    | 38   | 81.8   | 9.5           | 1   | 54            | 45   | 99.2   | 12.5 | 2.5 |
| TTIK            |      | 1  | SHS                               | 38    | 38   | 78     | 5.7           | 2.2 | 53            | 49   | 96.7   | 10   | 1   |
| Rollon          | F    | 0  | MR                                | 38    | 42   | 78.8   | 6.5           | 3   |               | not  | availa | able |     |
| NSK             | G    | 0  | RA                                | 43.5  | 30.8 | 83.5   | 11.2          | 2.2 | 55            | 35   | 100.2  | 13.2 | 2.5 |
| NTN-SNR         | Н    | 0  | BG/LGB                            | 38    | 43   | 78     | 5.7           | 2.2 |               | not  | availa | able |     |
| IKO             | J    | 0  | LRX/MX                            | 43    | 32   | 81.8   | 9.5           | 1   | 56            | 40   | 99.7   | 13   | 1   |
| SKF             | Ν./Ι | 0  | LLU                               | 47.8  | 35   | 86.6   | 14.3          | 1   | 55            | 43   | 99.8   | 13   | 2   |
| ON              | KF M |    | LLR                               |       | not  | availa | not available |     |               | not  | availa | able |     |

Released profiled rails with restriction (rail hardness <HRC 55 see table "Operating mode and profiled rail hardness" (section **8.1.2**)



(B.384.EN)

### 6 Intended Use

See also section 2.3

### 6.1 Guidelines for Application

- Please observe the correct dimensioning of clamping or braking force, friction work and switching frequency at an EMERGENCY STOP for safe holding of the mass and safe compliance of the required braking distance.
- Static application:

(Clamping unit) Type 384\_.0\_0\_\_

- Holding and clamping in case of power failure
- In case of pressure drop
- EMERGENCY STOP
- Dynamic application
  - (Brake unit) Type 384\_.1\_0\_ \_
  - Holding and clamping in case of power failure
  - In case of pressure drop
  - EMERGENCY STOP
  - Braking/stopping of linear movements
- Application in clean environments (penetration of lubricating greases, coarse-grained dust and other substances which reduce friction value can have a negative effect on the clamping / braking function).
- Application in enclosed buildings (in tropical regions, in high humidity and temperatures below 0 °C with long downtimes, and sea climates only after taking special measures).
- ▶ Please contact mayr® power transmission.

### 6.2 Limits

- ☐ The brake is not suitable for use in severely contaminated environments
- ☐ The brake is not suitable for application in high ambient temperatures >70 °C
- ☐ Brake is not suitable for use in liquid media
- ☐ Brake is not suitable for use in a vacuum
- □ Brake is not suitable for contact with abrasive media (e.g. abrasive and grinding dust)
- ☐ Brake is not suitable for contact with aggressive, corrosive media (e.g. solvents, acids, lyes, salts etc.)
- ☐ Brake is not suitable for contact with foodstuffs

### 6.3 Reasonably Foreseeable Misuse

The following uses are prohibited and may generate hazards.

- Any opening of the screws on the housing.
- Operation without profiled rail.
- Exceedance of the stated maximum operating pressure.
- ☐ Changes to brakes through additional cut-outs, bores etc.

### 6.4 Duration of Use

20 years or on reaching the T10d (for definition, see EN ISO 13849-1) duration of use.



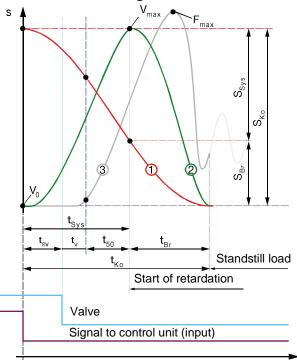



Diagram: Switching / Braking Times / Distances

### Name

| 1                 |                     | Distance                                                                                                 |
|-------------------|---------------------|----------------------------------------------------------------------------------------------------------|
| 2                 |                     | Speed                                                                                                    |
| 3                 |                     | Axial force                                                                                              |
| β                 | [°]                 | Angular position 0° (horizontal) to 90° (vertical)                                                       |
| ав                | [m/s <sup>2</sup> ] | <b>Acceleration</b> of the downward-moving load, dependent on the angular position                       |
| a∨                | [m/s <sup>2</sup> ] | Retardation                                                                                              |
| g                 | [m/s <sup>2</sup> ] | Gravitational acceleration (9.81 m/s²)                                                                   |
| F <sub>Br</sub>   | [N]                 | Braking force for dynamic calculation                                                                    |
| F <sub>erf.</sub> | [N]                 | Required holding force                                                                                   |
| F <sub>Nenn</sub> | [N]                 | Nominal holding force (minimum holding force)                                                            |
| F <sub>NGes</sub> | [N]                 | Total nominal holding force (one or more brakes)                                                         |
| F <sub>max</sub>  | [N]                 | Maximum holding force                                                                                    |
| m                 | [kg]                | Load mass                                                                                                |
| S <sub>Br</sub>   | [m]                 | <b>Braking distance:</b> Distance from the beginning of the retardation up to the standstill of the load |
| Ssys              | [m]                 | <b>System distance:</b> Distance travelled by the load until the retardation begins.                     |
| Sko               | [m]                 | Stopping distance: Distance from the signal interruption up to standstill of the load                    |
| t50               | [s]                 | Brake switching time                                                                                     |
| t <sub>V</sub> 1) | [s]                 | Valve switching time                                                                                     |
| tsv               | [s]                 | Switching time control unit (signal processing time)                                                     |
| tsys              | [s]                 | System switching time                                                                                    |
| t <sub>Br</sub>   | [s]                 | Brake braking time                                                                                       |

#### General

When selecting the brake, the nominal holding force must be greater or equal to the required holding force.

$$F_{Nenn} \ge F_{erf.}$$
 [N]

### Dimensioning for dynamic braking (EMERGENCY STOP)

For safety reasons, at least the weight load of the masses to be held +100 % reserve must be provided.

The larger the ratio of the nominal holding force to the required holding force, the shorter the stopping distance (for the same technical conditions)

The minimum required holding force can be calculated with the following formula:

$$F_{erf.} = \frac{m \times g}{0.5}$$
 [N]

### Dimensioning for static holding (clamping)

For safety reasons, at least the weight load of the masses to be held +25 % reserve must be provided.

The minimum required holding force can be calculated with the following formula:

$$F_{erf.} = \frac{m \times g}{0.8}$$
 [N]

The stopping distance / stopping time of the load to be braked is strongly dependent on the following influences:

- Switching time control unit (signal processing)
- Switching time of the control valve
- Switching time of the brake
- Cross-section and length of the lines

The larger the sum of the switching times, the later the retardation of the load occurs (due to longer periods of acceleration). The stopping distance / the stopping time becomes longer (with constant holding force).

### Name

| t <sub>Ko</sub>  | [s]   | Stopping time: Time from the signal interruption up to standstill of the load |
|------------------|-------|-------------------------------------------------------------------------------|
| $V_0$            | [m/s] | Initial speed                                                                 |
| $V_{\text{max}}$ | [m/s] | Maximum speed                                                                 |

If you have any questions, please contact *mayr*<sup>®</sup> power transmission.



(B.384.EN)

### 6.5.1 Calculation Example (Dynamic Braking)

| Data                           |       |                       |
|--------------------------------|-------|-----------------------|
| Angular position profiled rail | β     | = 90° (vertical axis) |
| Mass                           | m     | = 700 kg              |
| Initial speed                  | $V_0$ | = 0.5 m/s             |
| Valve switching time           | tv    | = 0.016 s             |
| Switching time control system  | tsv   | = 0.020 s             |
| Existing operating pressure    |       | = 75 bar              |

### 1. Pre-selection of braking force

$$F_{erf.} = \frac{m \times g}{0.5}$$
 [N]  
$$F_{erf.} = \frac{700 \times 9.81}{0.5}$$
 = 13734 [N]

Selected: ROBA®-guidestop Size 45,

Type 3840.1\_0\_ Nominal holding force F<sub>Nenn</sub> = 15000

(from section 5.2 Table "Technical Data")

### 2. Calculation of the stopping distance/stopping time

Checking the selected brake size

### Acceleration of the load

a<sub>B</sub> = 
$$g \times \sin(\beta) = 9.81 \times \sin(90^\circ) = 9.81$$
 [m/s2]

### System distance

| Ssys             | = | Vo x tsys + aB          | $\times$ t <sub>Sys</sub> <sup>2</sup> $\times$ 0.5 | [m] |
|------------------|---|-------------------------|-----------------------------------------------------|-----|
| $S_{\text{Sys}}$ | = | $0.5 \times 0.086 +$    | $9,81 \times 0,086^2 \times 0,5$                    | [m] |
| $S_{Sys}$        | = | 0.079                   |                                                     | [m] |
| tsys             | = | $t_{50} + t_V + t_{SV}$ | = 0.050 + 0.016 + 0.                                | 02  |
| tsys             | = | 0.086                   |                                                     | [s] |

### Braking distance

$$S_{Br} = \frac{V_{max}^2}{2 \times \left(\frac{F_{NGes}}{m} - a_B\right)}$$
 [m]

$$S_{Br}$$
 =  $\frac{1.34^2}{2 \times 11.62}$  = 0.077 [m]  
 $V_{max}$  =  $V_{0} + a_{B} \times t_{Sys}$  [m/s]  
 $V_{max}$  = 0.5 + 9.81 × 0.086 = 1.34 [m/s]

### Stopping distance

| Sko    | = | S <sub>Br</sub> + S <sub>Sys</sub> |         | [m] |
|--------|---|------------------------------------|---------|-----|
| $S_Ko$ | = | 0.077 + 0.079                      | = 0.156 | [m] |

### Stopping time

### Retardation (for system dimensioning)

$$a_V = \frac{F_{Nges} \times 2.5}{m} - g = \frac{15000 \times 2.5}{700} - 9.81 = 43.76 \text{ [m/s}^2\text{]}$$
  
Load =  $\frac{a_V}{g} = \frac{43.76}{9.81} = 4.46$  [g]

### 3. Friction work

### Friction work per braking action

| $\mathbf{Q}_{r}$ | $= m \times a_B \times S_{Br} + 0.5 \times m \times V_{max}^2$    | [J] |
|------------------|-------------------------------------------------------------------|-----|
| $Q_{r}$          | $= 700 \times 9,81 \times 0,077 + 0,5 \times 700 \times 1,34^{2}$ | [J] |
| $\cap$           | _ 4457                                                            |     |

### $Q_r = 1157$

### Number of braking actions up to wear end

$$Z_{zul.} = \frac{Q_{r \text{ ges}}}{Q_{r}}$$

### 6.5.2 Switching Times

| Friction Work and Switching Times (Type 384                      | Size               |       |            |       |       |       |
|------------------------------------------------------------------|--------------------|-------|------------|-------|-------|-------|
|                                                                  |                    |       | 35         | 45    | 55    | 65    |
| Permitted total friction work up to wear end <sup>2)</sup>       | Qr ges.            | 106 J | On request |       |       |       |
| Maximum permitted friction work per braking action <sup>2)</sup> | Qr <sub>zul.</sub> | [J]   | On request |       |       |       |
| Brake switching time                                             | <b>t</b> 50        | [s]   | 0.040      | 0.050 | 0.050 | 0.060 |

<sup>1)</sup> For friction work Type 384\_.0\_0\_ \_, please contact *mayr*® power transmission. The switching times also apply for Type 384\_.0\_0\_ \_.



<sup>&</sup>lt;sup>2)</sup> For higher friction work / total friction work, please contact *mayr*<sup>®</sup> power transmission.

(B.384.EN)

### 7 Storage

### 7.1 Brake Storage

- Store the brakes in a horizontal position, in dry rooms and dust and vibration-free.
- ☐ Relative air humidity < 50 %.
- ☐ Temperature without major fluctuations within a range from 0 °C up to +40 °C.
- Do not store in direct sunlight or UV light.
- Do not store aggressive, corrosive substances (solvents / acids / lyes / salts etc.) near to the brakes.

For longer storage lasting more than 2 years, special measures are required.

▶ Please contact mayr® power transmission.

### 8 Installation

### 8.1 Installation Conditions

Please observe before installation!

#### 8.1.1 General

☐ The brake is delivered assembled ready for installation



#### Please Observe!

Leave the brake in its installed condition!

☐ The nominal holding force is set manufacturerside via pre-tensioning the springs (6). The ballheaded tensioning screws (3) for adjustment of the stroke path are secured against twisting with Loctite 243.

### CAUTION



The nominal holding force might be influenced.

Customer-side turning of the ball point screw (3) can lead to malfunctions.

Never turn the ball-headed tensioning screws.



Proximity switches are subject to a failure rate. For the release monitoring device on ROBA®-topstop® brakes, a proximity switch with a very high reliability and a high MTBF value (Mean Time Between Failure) is used.

Proximity switches are components according to IEC60947-5-2 and are to be used according to the standard. They are electrically specified for applications in well protected (controlled) operating environment (par. 8.2.6). The power supply must be selected accordingly. Additional measures, such as separate cable routing and shielded cables, may be necessary for EMC-compliant installation in machines and systems, especially for long cables.



(B.384.EN)

(B.384.EN)

### 8.1.2 Profiled rail

Operating mode and profiled rail hardness

| Operating mode            | Static clamping                                                                                                                            |           | Sporadic EN<br>STOP bi                                                                    |           | Dynamic braking<br>(min. 2000)           |               |  |
|---------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------|-----------|------------------------------------------|---------------|--|
| Profiled rail hardness 1) | <hrc 55<="" th=""><th>≥HRC 55</th><th><hrc 55<="" th=""><th>≥HRC 55</th><th><hrc 55<="" th=""><th>≥HRC 55</th></hrc></th></hrc></th></hrc> | ≥HRC 55   | <hrc 55<="" th=""><th>≥HRC 55</th><th><hrc 55<="" th=""><th>≥HRC 55</th></hrc></th></hrc> | ≥HRC 55   | <hrc 55<="" th=""><th>≥HRC 55</th></hrc> | ≥HRC 55       |  |
| Type 380 clamping unit    | permitted                                                                                                                                  | permitted | not permitted                                                                             | permitted | not permitted                            | not permitted |  |
| Type 381 brake unit       | permitted                                                                                                                                  | permitted | permitted                                                                                 | permitted | permitted                                | permitted     |  |

1) Requirements profiled rail must be fulfilled (see table "Profiled rail requirements")

### Profiled rail requirements

 $\it mayr^{\it @}$  power transmission recommends the use of profiled rails from approved rail manufacturers.

The profiled rail must accord with the manufacturer and rail type stated in the order number.



### Please Observe!

The **ROBA**<sup>®</sup>-guidestop function can only be guaranteed on a proper rail surface.

When using other profiled rails the following applies:

| Tolerance thickness   | ±0.02 mm                              |
|-----------------------|---------------------------------------|
| Surface quality       | Ra < 0.8 µm                           |
| Yield point           | min. 400 N/mm <sup>2</sup> (e.g. C45) |
| Evenness/Straightness | ≥0.01 mm                              |

### ATTEN-TION

Never operate the brake without a profiled rail

Activation of the brake without a profiled rail will cause damage. The brake can no longer be used.

### **CAUTION**



The clamping effect might get influenced by friction value-reducing materials, such as tough greasy lubricants, greases or separating agents - please clean, if necessary; see section 11.4

The effects of friction value-reducing substances on the holding force must be checked before initial operation.



(B.384.EN)

### 8.1.3 Controls

The *mayr*<sup>®</sup> power transmission company recommends the following hydraulic controls.

The piston space is filled with hydraulic oil, thus suspending the spring force. The hydraulic oil in the piston space is deduced in case of power failure. The spring force has an effect on the clamping element. The profiled rail is clamped/ braked.

During every operational movement of the profiled rail, the 3/2-way valve is electrically switched and the brake opened.

### **Recommendation:**

- Pressure fluctuations can be reduced through a non-return valve.
- In order to guarantee fastest possible switching of the brake, the largest possible line diameter should be used in the area of the return flow lines. In addition, no choke valves may be installed in this area, and the hydraulic lines between the brake and the valve must be kept as short as possible.
- The size and speed of the 3/2 directional control valve has an effect on the switching time.

| WARNING | Dropping of the load   |
|---------|------------------------|
|         | With residual pressure |
|         | clamping force cannot  |

With residual pressure in the line, the full clamping force cannot be guaranteed.

possible

Use a pressure switch to ensure that the line is pressureless (<0.5 bar).

| 3_ | 4 5      |  |
|----|----------|--|
|    |          |  |
| 2  |          |  |
|    |          |  |
|    | <b>-</b> |  |
|    |          |  |
| ì  |          |  |

Fig. 5

| Item | Name                                                     |  |
|------|----------------------------------------------------------|--|
| 1    | Pressure source                                          |  |
| 2    | Non-return valve (in case of pressure fluctuations)      |  |
| 3    | 3/2-directional control valve                            |  |
| 4    | Pressure switch: Switching point <0.5 bar (brake closed) |  |
| -    | Protection against personal hazards                      |  |
|      | Pressure switch: Min. Operating pressure                 |  |
|      | (brake opened)                                           |  |
| 5    | <ul> <li>Protection against machine damage</li> </ul>    |  |
|      | - in case of pressure fluctuations                       |  |
|      | - In case of pressure drop e.g. Leakages                 |  |

(B.384.EN)

#### 8.2 Installation (Figs. 1 and 2)

#### 8.2.1 **Pre-requisites**

- Unpack the brake
- Check for completeness
- Check the data on the Type tag
- Visual inspection (e.g. after longer storage period)

### **CAUTION**



### Please observe the own weight of the brake

The brake may drop during lifting / disassemble. The consequences may be crush injuries and impact injuries.

### 8.2.2 Preparation

- Have the necessary tools ready:
  - Spanners etc.
  - Torque wrenches
- Please observe the required minimum thickness of the customer-side mounting flange (dimension B<sub>1</sub>, see Chapter 5.2).
- Provide fixing screws (not included in the standard scope of delivery)

| Fixing screw sizes and tightening torques |            |                                                                   |      |         |  |
|-------------------------------------------|------------|-------------------------------------------------------------------|------|---------|--|
| Size                                      | Thread     | Thread Tighten- Prop- Max. ing erty Screw-in torque class depth B |      |         |  |
| 35                                        | 6(4) x M12 | 109 Nm                                                            | 10.9 | 21.7 mm |  |
| 45                                        | 6(4) x M16 | 260 Nm                                                            | 10.9 | 27.7 mm |  |
| 55                                        | 6(4) x M20 | 520 Nm                                                            | 10.9 | 36 mm   |  |
| 65                                        | 6(4) x M24 | 900 Nm                                                            | 10.9 | 43 mm   |  |

All tightening torques are recommendations only. These data do not relieve the user from checking the data regarding the actual installation situation.

### 8.2.3 Bleed

The ROBA®-guidestop is filled manufacturer-side with hydraulic oil.



Bleeding is only necessary in case of an oil leakage, for example during the assembly process

With a wiper (optional), connections m3 and m4 can no longer be used.

- Remove the screw plug (9) from the required hy-1. draulic connection (7)
- Connect the hydraulic hose via a thread on the 2. hydraulic connection (7)
- Remove the second screw plug (9) from the hy-3. draulic connection (7) on the opposite side
- Fill the brake with oil until the oil leaks out of the 4 second hydraulic connection (7) lying opposite
- Screw in the second screw plug (9) and tighten to 5. a tightening torque of 12 Nm

#### 8.2.4 Installation Procedure

- Remove the screw plug (9) from the required hy-1. draulic connection (7)
- Connect the hydraulic hose via a thread on the 2. hydraulic connection (7)
- Pressurize the brake with operating pressure see 3. technical data section 5.2.
- 4. Unscrew and remove the transportation lock (10)

### ATTEN-**TION**

### The brake could be damaged

Removal of the transportation lock (10) in de-pressurized condition of the brake leads to damage.

Remove the transportation lock (10) (red screw head) only in pressurized condition.

- 5. Optional: Screw on the wiper (14) with the fixing screws for wiper (14.1) without torque. Screw securement with Loctite 243.
- Push the brake onto the profiled rail. 6.
- 7. Screw in the fixing screws (without torque).
- 8. Screw securement with Loctite 243
- 9. Switch the brake in de-pressurized state, thereby placing it under tension (centring).

### ATTEN-TION

### Only close the brake with guides

Brake must be pushed onto the profiled

10. Tighten the diagonally opposite fixing screw step by step.

Tighten the fixing screws using a tightening torque of 10 Nm.

- 11. Pressurize the brake.
- 12. Switch the brake in de-pressurized state.
- 13. Tighten the diagonally opposite fixing screw step by step.

Tighten the fixing screws using the tightening torque (see table in section 8.2.2)

### CAUTION

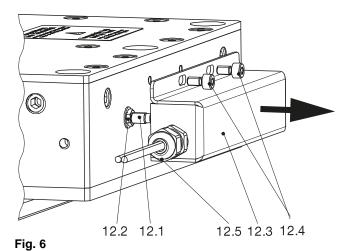


### Load crash possible

The brake will not work with the transportation locks (10) screwed in.

The transportation lock (10) (red screw head) must be removed.

14. Optional: Tighten the fixing srews for wiper (14.1) to the torque stated in the table.


| Size | Thread | Tightening torque |
|------|--------|-------------------|
| 35   | 4 x M5 | 5 Nm              |
| 45   | 4 x M5 | 5 Nm              |
| 55   | 4 x M6 | 9 Nm              |
| 65   | 4 x M6 | 9 Nm              |



(B.384.EN)

### 9 Options

### 9.1 Switching Condition Monitoring (NO Contact)

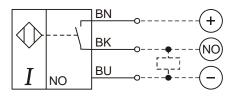




### Please Observe!

The switching condition monitoring is installed and set manufacturer-side.

A proximity switch (12.1) emits a signal for every brake condition change.


On type 3840 2 proximity switches (12.1) are installed.

Plausibility check

| Drake enemed | Pressure switched on                                                | Signal "OFF" |  |
|--------------|---------------------------------------------------------------------|--------------|--|
| Brake opened | Pressure switch Item 5, min. operating pressure (see <b>8.1.3</b> ) |              |  |
| Brake closed | Pressure switched off                                               | Signal "ON"  |  |
| Diake closed | Pressure switch Item 4, no pressure (see <b>8.1.3</b> )             |              |  |

The customer is responsible for a signal evaluation of both conditions.

### Wiring Diagram:



| Technical Data           |               |                         |  |
|--------------------------|---------------|-------------------------|--|
| PNP/NO contact           |               |                         |  |
| Rated operating voltage: |               | U <sub>e</sub> = 24 VDC |  |
| Operating voltage:       |               | U <sub>B</sub> = 1030   |  |
|                          |               | VDC                     |  |
| Cable length:            | up to size 35 | 2000 mm                 |  |
| Cable length:            | from size 45  | 5000 mm                 |  |

### Replacement of the proximity switch



### Please Observe!

Proximity switches cannot be guaranteed fail-safe. Therefore, please ensure appropriate access for replacement or adjustment.

### **Pre-requisites**

#### WARNING

### Load crash possible



Gravity-loaded axes must be secured before beginning the work: this secures them against dropping.

☐ Brake is pressureless (enclosed) on the profiled rail.

### **De-installation**

- 1. Unscrew the cable gland (12.5)
- 2. Unscrew the cap screws (12.4)
- Remove the cover plate (12.3)
- Unscrew the hexagon nut (12.2), unscrew and remove the proximity switch (12.1).

### **Installation and Adjustment**

Initial position: Proximity switch is not connected

| Acti | vity                                                                                                        | Result       |
|------|-------------------------------------------------------------------------------------------------------------|--------------|
| 1.   | Check whether the brake is depressurized                                                                    |              |
| 2.   | Screw the proximity switch in carefully up to its limit stop                                                |              |
| 2.1  | Unscrew the proximity switch one full turn (360°)                                                           |              |
| 3.   | Counter the proximity switch (12.1) with the hexagon nut (12.2) (tightening torque see section <u>5.2</u> ) |              |
| 4.   | Connect the proximity switch (see wiring diagram)                                                           | Signal "ON"  |
| 5.   | Adjust the operating pressure                                                                               | Signal "OFF" |
| 6.   | Carry out a functional inspection                                                                           |              |
| 6.1  | Switch off the pressure                                                                                     | Signal "ON"  |
| 6.2  | Switch on the pressure                                                                                      | Signal "OFF" |
| 7.   | Pull the cable through the cable gland (12.5)                                                               |              |
| 8.   | Screw on the cover plate (12.3)                                                                             |              |
| 9.   | Tighten the cable gland (12.5)                                                                              |              |

(B.384.EN)

### 10 Initial Operation

### 10.1 Brake Inspection (before initial operation)

- Check all fixing screws for the required tightening torque.
- ☐ Visual inspection of the hydraulic connections and lines.
- ☐ Check for leakages (on pressurization).
- ☐ Check dimension E<sub>2</sub> (rail waistline see table <u>5.2.3</u>)

### 10.2 Brake Test (Static)





During the Brake Test danger to personnel and damage to machines cannot be ruled out in case of malfunctions (incorrect installation, control errors etc.). Risks to personnel and machine damage cannot be ruled out.

Do not enter the danger zone.

Possibly take measures for catching or damping the load.

Check dimensioning!

### 10.2.1 (Static) Brake Inspection

 On vertical axes, a brake inspection is carried out via load assumption or via the drive.



### Recommendation!

Test the brake using the nominal holding force or the maximum load mass.

### 10.3 Brake Inspection (During Operation)



### Recommendation!

A test must be carried out to guarantee the necessary holding force with all control and brake times if a risk is generated by gravity-loaded axes. A cyclic brake inspection during running operation provides additional safety. Depending on the danger, please observe the respective regulations and standards.

### 10.3.1 Regular Function Inspection (static)

- Depending on the application requirements, we recommend carrying out regular braking force inspections (depending on the application), e.g. check the static holding force 1 x per shift with nominal holding force or with maximum load mass.
- In addition to the regular inspection of the holding force, we recommend the application of a switching condition monitoring device (option), in order to request the brake switching condition or to prevent a possible load crash on vertical installation.



#### Recommendation!

The holding force may be reduced by friction value-reducing materials. If the brake during the functional inspection does not achieve the nominal holding force, repeat using 90 % of the nominal holding force and clean the profiled rail at the next opportunity (see section 11.4).



(B.384.EN)

### 11 Maintenance / Inspection / Switching Frequency

### 11.1 Switching Frequency

The ROBA®-guidestop is designed for a switching frequency of up to 200.000 switching actions.

### 11.2 Inspection

Check the condition

| Measure           | Condition       |                                                                 | Interval                                                                                                                 | Implementa-<br>tion      |  |
|-------------------|-----------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------------------------|--|
| Visual inspection | Hydraulic       | Check that the connections and connection lines are leak-proof. | To be determined by machine operator depending on the installation situation  ▶ Please contact mayr® power transmission. | Qualified per-<br>sonnel |  |
|                   | Profiled rail   | Typ 3840_ 0<br>Check the profiled rail for wear                 | After every EMERGENCY STOP occurrence.                                                                                   |                          |  |
|                   | Wear indicators | Nominal holding force is not reached (slipping). Replace brake  | To be determined by machine operator depending on the installation situation  ▶ Please contact mayr® power transmission. | mayr®power transmission  |  |

#### 11.3 Maintenance

The ROBA®-guidestop is largely maintenance-free.

| Measure                 | Note/Comment                                                                                                                                                                                                                                                                                                                                     | IInterval               | Implementa-<br>tion      |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------|
| Functional Inspection   | Carry out a regular functional inspection                                                                                                                                                                                                                                                                                                        | see section 10.3        |                          |
| Check the profiled rail | The profiled rail must be checked regularly for contamination with friction value-reducing materials; it must be cleaned, if necessary (see section 11.4).  Special measures may be necessary if the device is subject to large amounts of dirt or dust or is operating in extreme ambient conditions.  Please contact mayr® power transmission. | at least every 6 months | Qualified per-<br>sonnel |



Should the **ROBA**®-guidestop no longer meet the required characteristics or should the necessary safety for work on the machine or system no longer be given, the brake must be checked at *mayr*® power transmission and, if necessary, professionally repaired and approved.



(B.384.EN)

### 11.4 Cleaning

Only in case severe contamination has an adverse effect on the brake function

☐ Clean the profiled rail (with a clean, lint-free cloth) using ethyl alcohol.

#### 12 De-installation

### **CAUTION**

### Please observe the own weight of the



The brake may drop during lifting / disassemble. The consequences may be crush injuries and impact injuries.

### WARNING

### Load crash possible



The brake must be load-free. Please check that it is load-free before de-installation.

- ☐ Provide security in the danger zone
- Support the load

De-installation takes place by following the "Installation procedure" section 8.2.4 backwards.



### Please Observe!

Prior to the brake being pushed from the profiled rail, the transportation lock (10) must be screwed in.

Brake must be pressurized with opening pressure.

Completely screw in the transportation lock (10) (2 or 4 screws) by hand up to its limit.

Torque = approx. 2 Nm

### 13 Disposal

For disposal, please observe the specific regulations of the respective country of application.

### All steel components:

Steel scrap (Code No. 160117)

Seals, O-rings, V-seals, elastomers:

Plastic (Code No. 160119)



(B.384.EN)

### 14 Malfunctions / Breakdowns

| Malfunction                            | Possible Causes                                                                                        | Solutions                                          | Implementation                              |  |
|----------------------------------------|--------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------|--|
|                                        | Operating pressure too low                                                                             | Check operating pressure and increase if necessary |                                             |  |
| Brake does not release                 | Defective valve                                                                                        | Replace defective valve                            | Qualified personnel                         |  |
|                                        | Leakage in the oil feed line                                                                           | Seal leakage                                       |                                             |  |
|                                        | Brake wear limit reached                                                                               | Replace brake                                      | mayr®power transmission                     |  |
| Brake does not brake                   | Defective valve                                                                                        | Replace defective valve                            |                                             |  |
|                                        | The profiled rail does not fit to the brake                                                            | Check dimensioning, check technical data           |                                             |  |
| Delays in brake opening                | Cross-section of oil feed too small                                                                    | Mount line with larger cross-<br>section           | Qualified personnel                         |  |
|                                        | The profiled rail does not fit to the brake                                                            | Check dimensioning, check technical data           |                                             |  |
|                                        | Excessive wear on profiled rail / brake shoe                                                           | Replace brake                                      | mayr®power transmission                     |  |
| Braking distance too long              | Cross-section of oil output too small / too long                                                       | Mount line with larger cross-<br>section           |                                             |  |
| 3                                      | Friction value-reducing materials on the profiled rail                                                 | Clean the profiled rail                            |                                             |  |
|                                        | Incorrect dimensioning                                                                                 | Check dimensioning, check                          | Qualified personnel                         |  |
|                                        | 3/2-directional control valve too slow                                                                 | technical data                                     |                                             |  |
|                                        | Operating pressure too high                                                                            | Check operating pressure and reduce if necessary   |                                             |  |
| Brake (severely) oil-contami-<br>nated | Use of a hydraulic oil (aggressive) which has not been recommended by <i>mayr</i> ® power transmission | Replace brake                                      | <i>mayr</i> <sup>®</sup> power transmission |  |
|                                        | Screw connection / oil feed line leaking                                                               | Replace screw connection or feed line              |                                             |  |
|                                        | Incorrect assembly and adjust-<br>ment of the switching condition<br>monitoring system                 | Repeat adjustment process, see section <u>9.1</u>  |                                             |  |
| Switching condition monitoring         | Brake does not release                                                                                 | See Malfunctions → Brake does not release          | Qualified personnel                         |  |
| emits no signal                        | Defective cable                                                                                        | Replace defective cable                            |                                             |  |
|                                        | Defective proximity switch                                                                             | Replace defective proximity switch                 |                                             |  |



 $\textit{Mayr}^{\text{@}}$  transmission will take no responsibility or guarantee for replacement parts and accessories which have not been delivered by  $\textit{mayr}^{\text{@}}$  power transmission, or for damage resulting from the use of these products.

