

ROBA[®]-servostop[®]

www.**Mayr**[®].com

P.898000.V06.EN

ROBA[®]-servostop[®] The perfect safety brakes for servomotors and lightweight robots

Reliable function due to fail-safe principle

The spring applied ROBA®-servostop® is closed in de-energised condition. It provides the required braking torque even in the event of an emergency stop, a power failure or when the power supply is interrupted. To ensure that the ROBA®-servostop® brakes also provide sufficient friction work in emergency stop situations and brake movements with a defined braking torque, a friction lining developed for this purpose with a corresponding steel counter friction surface is required. While this is common with safety brakes, permanent magnet brakes with their steel-on-steel friction combinations reach their tribological limits here.

Reliable even at high temperatures

The braking torque is generated through special organic friction linings. These temperature-resistant linings impress with their high, even friction coefficients, and can also be used at high ambient temperatures of up to 120 $^\circ$ C.

Lightweight solution for robotics

In the *mayr*[®] modular system, users can choose between classic servo brakes in the motor, with hub and toothed rotor, in classic or slim constructional design. In addition, there is another slim and lightweight design variant, the ROBA[®]-servostop[®] Cobot, a pad solution with a large inner diameter. The latter is specially designed for integration into the robot joint. These solutions are particularly compact and convince with their low weight and ideal dynamic properties. But also the classic brakes with hub and toothed rotor can be customized and integrated directly into a joint.

High performance density and energy efficiency

The ROBA®-servostop® brakes are not only very lightweight, but also extremely fast when it comes to magnetic actuation. At the same time they display high performance density and wear resistance. Furthermore, the brakes impress users with their high permitted friction work during dynamic braking actions. In addition, the ROBA®-servostop® brakes are designed in such a way that the installation space is optimally used and as much energy as possible is saved.

Easy installation

The simple and ready-to-install design makes installation substantially easier. The operating air gap does not have to be adjusted. Exact axial positioning on the motor shaft is not required. The brake always operates accurately and reliably with a steady air gap and tolerates minor bearing backlash and temperature expansion. Installation errors are almost completely excluded.

Any installation position in servomotors

For servomotors, the brakes are preferably installed in the A-bearing shield, because the fixed bearing is located here and temperature expansions cannot influence the brake severely. The ROBA®-servostop® can also be integrated without restrictions into the B-bearing side of the motor, as temperature expansions and bearing backlash do not have a negative influence on the function and the reliability of the brake.

ROBA®-servostop® – Overview of the series

ROBA®-servostop® Classic

Classic series for installation into A- or B-bearing shield of servomotors

Type 8980.00_00

- High braking torque
- Wear-resistant large number of emergency stops (dynamic brakings) are allowed
- Easy installation

Performance data

Nominal braking torque:1.5 up to 100 NmMax. speed:3000 up to 9500 rpm

Page 4

ROBA®-servostop® Lean

Slim series for installation into A- or B-bearing shield of servomotors

Type 8982.00_01

- Slim design
- Easy installation
- High performance density at low energy consumption
 - Operation with overexcitation and power reduction

Performance data

Nominal braking torque: 0.31 to 11.5 Nm Max. speed: 4500 up to 10500 rpm

Page 6

ROBA®-servostop® Cobot

Proven series for lightweight robots Type 8981.29_01

- Can be integrated into even the smallest installation spaces
- Ideal for hollow shafts
- High performance density at low energy consumption
 - Operation with overexcitation and power reduction

Performance data

Nominal braking torque:0.23 to 9 NmMax. speed:4500 up to 10500 rpm

Page 8

ROBA®-servostop® Classic

Type 8980.00100 Screw connection on the coil carrier front side

Technical Data							Size				
lechnical Data			50	60	70	80	90	100	120	140	160
Nominal braking torque ^{1) 2) 3) 4)}	M _N	[Nm]	1.5	3.1	5.3	7	9.8	15.5	30	60	100
Coil voltage	U	[VDC]	24	24	24	24	24	24	24	24	24
Electrical power	P ₂₀	[W]	9.5	11.7	15.1	17.8	22.2	27.7	32.4	43.0	60.5
Maximum speed	n _{max}	[rpm]	9500	8000	7000	6500	5500	5000	4000	3500	3000
Max. idle speed		[rpm]	20000	16500	14500	12500	11500	9500	7500	6500	5500
Weight at d _{1 max}		[kg]	0.34	0.47	0.66	0.89	1.29	1.7	2.66	4.37	6.11
Total mass moment of inertia at d _{1 max}	J	[10 ⁻⁶ kgm ²]	2.59	5.65	11.54	17.94	30.95	71.88	182.02	438.96	895.57

Dimensione					Size					1)
Dimensions	50	60	70	80	90	100	120	140	160	2)
а	0.15	0.15	0.15	0.15	0.2	0.2	0.2	0.2	0.25	1
b,	7	7	10	10	12	12	12	14	14	
d	16	23	29	29	33	42	47	65	70	
d _{1 min}	8	9	11	13	13	18	23	32	30	
d _{1 max} ⁵⁾	12	15	20	20	25	30	35	45	50	
D	46	56	64	72	80	90	112	132	150	
G	25	28	38	38	45	55	62	85	90	
Н	52	62	72	80	90	102	124	147	166	
L	31.15	31.15	34.25	35.25	39.3	42.4	44.4	53.4	57.45	
-0.2	7.4	8	9.2	9.2	10.5	11.8	13.5	17	29	
l,	20.5	19.5	20.5	21.5	23.5	25.5	24	28	31	
l ₂	23.75 ±0.1	⁵ 23.15 ±0.15	25.05 ± 0.2	26.05 ± 0.2	28.8 ± 0.3	30.6 ± 0.3	$30.9 \ ^{\pm 0.3}$	36.4 ± 0.5	$28.45^{\pm 0.5}$	
S	3.4	3.4	4.5	4.5	5.5	5.5	6.6	9	9	
S ₁	M3	M3	M4	M4	M5	M5	M6	M8	M8	
X	25°	25°	25°	25°	25°	25°	25°	25°	25°	

Braking torque tolerance: + 75 %

Suitable for a temperature of 0 up to 60 °C: For higher temperatures, please consider the following braking torque reductions: >60 °C to 80 °C: 10 % reduction >80 °C to 100 °C: 20% reduction >100 °C to 120 °C: 30% reduction

For temperature -20 °C to 0 °C: Observe the "Ambient temperature/Climate conditions" section in the operational instructions!

3) The braking torque values are based on friction values determined in tests at mayr[®] power transmission. As a friction system is influenced by many parameters, such as mounting situation, temperature, ambient conditions, run-in condition, wear, switching work, sliding speed, aging, contamination, etc., deviating brak-ing torques are possible. The specified nominal braking torque is a lower limit which is very likely to be reached, but cannot be guaranteed due to the many possible influences. The fluctuations in braking torques must be taken into account during dimensioning by providing appropriate safety measures. Especially for critical applications, it is important to consult mayr® power transmission and carry out an appropriate application check.

4) Remarks and recommendations regarding the dimensioning and selection of brakes (e.g., based on load torque and test torque) can be found in the operational instructions and may be provided on request from mayr® power transmission.

5) The respective maximum bores can be found in the table "Permitted hub bores" (page 11) according to the corresponding keyways and their tolerances.

4

ROBA®-servostop® Classic – InstallationExamples

Screw connection on the coil carrier front side

The brakes are screwed on via threaded holes in the coil carrier and through holes, e.g., in the bearing flange (provided by the customer). The braking torque is transmitted into the hub via the toothing of the rotors. The hub must be fixed axially. Observe the installation dimensions! The braking torque is transmitted from the hub to the shaft via a key (provided by the customer).

Screw connection on the coil carrier back side

The brakes are screwed on via threaded holes in the coil carrier and through holes, e.g., in the bearing flange (provided by the customer). The braking torque is transmitted into the hub via the toothing of the rotors. The hub must be fixed axially. Observe the installation dimensions! The braking torque is transmitted from the hub to the shaft via a key (provided by the customer).

We reserve the right to make dimensional and constructional alterations.

Example: Order number 60 / 8980.00100 / 13 / 6885/1

Technical Data						Size			
Technical Data			40	50	60	70	80	90	100
Nominal braking torque ^{1) 2) 3) 4)}	M _N	[Nm]	0.31	0.7	1.9	3.7	5.5	7.9	11.5
Overexcitation voltage	Uo	[VDC]	24	24	24	24	24	24	24
Holding Voltage	U _H	[VDC]	8	8	8	8	8	8	8
Coil power at overexcitation voltage	Po	[W]	20.7	28.6	42.6	53.4	60.6	71.6	83.4
Coil power at holding voltage	P _H	[W]	2.3	3.2	4.7	5.9	6.7	8.0	9.3
Maximum speed	n _{max}	[rpm]	10500	8500	7000	6500	5500	5000	4500
Max. idle speed		[rpm]	21000	16500	14000	12500	10500	10000	9000
Weight at d _{1 max}		[kg]	0.12	0.19	0.29	0.47	0.57	0.76	0.94
Total mass moment of inertia at $d_{1 max}$	J	[10 ⁻⁶ kgm ²]	1.98	7.58	16.02	21.46	44.09	83.46	135.89

Dimensione				Size			
Dimensions	40	50	60	70	80	90	100
а	0.15	0.15	0.15	0.2	0.2	0.2	0.2
d	22.5	33.5	40.5	40.5	48.5	56	63
d _{1 min}	8	10	12	12	15	23	20
d _{1 max} ⁵⁾	12	20	25	25	30	35	37
D	43	53	62	70	80	90	100
G	22.5	33.5	40.5	40.5	50	57	67
Н	48	58	68	78	88	98	108
L	16.35	19.15	21.15	23.3	23.3	25.4	25.9
-0.2	7.4	9.2	9.5	9.5	10	13.5	12
l,	8.5	10	11	11.5	11.5	11.5	12
l ₂ ±0.5	8.95	9.95	11.65	13.8	13.3	11.9	13.9
S	2.4	2.4	2.9	3.4	3.4	4.5	4.5
S ₁	M2,5	M2,5	M3	M4	M4	M5	M5
X	25°	25°	25°	25°	25°	25°	25°

We reserve the right to make dimensional and constructional alterations.

5) The respective maximum bores can be found in the table "Permitted hub bores" (page 11) according to the corresponding keyways and their tolerances. 1) Braking torque tolerance: + 75 %

2) Suitable for a temperature of 0 up to 60 °C: For higher temperatures, please consider the following braking torque reductions:
>60 °C to 80 °C: 10 % reduction
>80 °C to 100 °C: 20% reduction

>100 °C to 120 °C: 30% reduction

For temperature -20 °C to 0 °C: Observe the "Ambient temperature/Climate conditions" section in the operational instructions!

- 3) The braking torque values are based on friction values determined in tests at mayr[®] power transmission. As a friction system is influenced by many parameters, such as mounting situation, temperature, ambient conditions, run-in condition, wear, switching work, sliding speed, aging, contamination, etc., deviating braking torques are possible. The specified nominal braking torque is a lower limit which is very likely to be reached, but cannot be guaranteed due to the many possible influences. The fluctuations in braking torques must be taken into account during dimensioning by providing appropriate safety measures. Especially for critical applications, it is important to consult mayr[®] power transmission and carry out an appropriate application check.
- 4) Remarks and recommendations regarding the dimensioning and selection of brakes (e.g., based on load torque and test torque) can be found in the operational instructions and may be provided on request from *mayr*[®] power transmission.

ROBA®-servostop® Lean – InstallationExamples

Screw connection on the coil carrier front side

The brakes are screwed on via threaded holes in the coil carrier and through holes, e.g., in the bearing flange (provided by the customer). The braking torque is transmitted into the hub via the toothing of the rotors. The hub must be fixed axially. Observe the installation dimensions! The braking torque is transmitted from the hub to the shaft via a key (provided by the customer).

Screw connection on the coil carrier back side

The brakes are screwed on via threaded holes in the coil carrier and through holes, e.g., in the bearing flange (provided by the customer). The braking torque is transmitted into the hub via the toothing of the rotors. The hub must be fixed axially. Observe the installation dimensions! The braking torque is transmitted from the hub to the shaft via a key (provided by the customer).

Example: Order number 60 / 8982.00101 / 22 / 6885/1

ROBA®-servostop® Cobot

Type 8981.29101

Screw connection on the coil carrier front side

Technical Data						Size			
Technical Data			40	50	60	70	80	90	100
Nominal braking torque ^{1) 2) 3) 4)}	M _N	[Nm]	0.23	0.5	1.4	2.7	4	6	9
Overexcitation voltage	U	[VDC]	24	24	24	24	24	24	24
Holding Voltage	U _H	[VDC]	8	8	8	8	8	8	8
Coil power at overexcitation voltage	Po	[W]	20.7	28.6	42.6	53.4	60.6	71.6	83.4
Coil power at holding voltage	P _H	[W]	2.3	3.2	4.7	5.9	6.7	8.0	9.3
Maximum speed	n _{max}	[rpm]	10500	8500	7000	6500	5500	5000	4500
Max. idle speed		[rpm]	10500	8500	7000	6500	5500	5000	4500
Weight		[kg]	0.11	0.17	0.26	0.43	0.52	0.67	0.81
Total mass moment of inertia	J	[10 ⁻⁶ kgm ²]	0.75	3.12	6.13	13.73	25.61	35.99	57.08

Dimensione				Size			
Dimensions	40	50	60	70	80	90	100
а	0.15	0.15	0.15	0.2	0.2	0.2	0.2
d	22.5	33.5	40.5	40.5	48.5	56	63
d ₁ ^{+0.1}	13	22	29	29	33	40	47
D	43	53	62	70	80	90	100
G	22.5	33.5	40.5	40.5	50	57	67
Н	48	58	68	78	88	98	108
L	13.35	16.35	18.35	20.9	20.9	21.9	22.4
I	0.6	1	1	1.5	1.5	1.5	1.5
l ₁	8.5	10	11	11.5	11.5	11.5	12
l ₂	10.8 ± 0.1	12.85 ± 0.1	14.35 ± 0.1	15.65 ± 0.2	15.65 ± 0.2	16.15 ± 0.2	16.65 ± 0.2
М	17	27	34	34	40	47	54
S	2.4	2.4	2.9	3.4	3.4	4.5	4.5
S ₁	M2,5	M2,5	M3	M4	M4	M5	M5
S ₂	1.8	2.4	2.4	2.4	3.4	3.4	3.4
X	25°	25°	25°	25°	25°	25°	25°
Ŷ	90° (4x)	90° (4x)	60° (6x)	36° (10x)	60° (6x)	45° (8x)	36° (10x)

We reserve the right to make dimensional and constructional alterations.

1) Braking torque tolerance: + 75 %

 2) Suitable for a temperature of 0 up to 60 °C: For higher temperatures, please consider the following braking torque reductions:
 >60 °C to 80 °C: 10 % reduction

00 0 10 00 0.	10 /01000000
-80 °C to 100 °C:	20% reduction
100 °C to 120 °C:	30% reduction

For temperature -20 °C to 0 °C: Observe the "Ambient temperature/Climate conditions" section in the operational instructions!

3) The braking torque values are based on friction values determined in tests at *mayr*[®] power transmission. As a friction system is influenced by many parameters, such as mounting situation, temperature, ambient conditions, run-in condition, wear, switching work, sliding speed, aging, contamination, etc., deviating braking torques are possible. The specified nominal braking torque is a lower limit which is very likely to be reached, but cannot be guaranteed due to the many possible influences. The fluctuations in braking torques must be taken into account during dimensioning by providing appropriate safety measures. Especially for critical applications, it is important to consult *mayr*[®] power transmission and carry out an appropriate application check.

4) Remarks and recommendations regarding the dimensioning and selection of brakes (e.g., based on load torque and test torque) can be found in the operational instructions and may be provided on request from may/® power transmission.

ROBA®-servostop® Cobot – InstallationExamples

Screw connection on the coil carrier front side

The brakes are screwed on via threaded holes in the coil carrier with through holes, e.g., in the bearing flange (provided by the customer). The rotor disk with the friction lining pads is screwed to the collar of the stepped shaft or hollow shaft (provided by the customers). Observe the installation dimensions!

Type 8981.29101

Screw connection via the flange plate (special design)

Customer-specific installation situation The brakes are screwed on via threaded holes in the flange plate and through holes, e.g., in the bearing flange (provided by the customer). The rotor disk with the friction lining pads is screwed to the shaft / hollow shaft front side. Observe the installation dimensions!

© TQ-Systems GmbH

Example: Order number 60 / 8981.29101

Screw connection on the coil carrier back side

The brake is mounted via through holes, e.g., in the bearing shield (provided by the customer) and threaded holes in the coil carrier rear side. The rotor disk with the friction lining pads is screwed to the collar of the stepped shaft or hollow shaft (provided by the customers). Observe the installation dimensions!

Type 8981.29001

Switching T	Timos					Ту	pe 8	980.	.00_0	00				Ту	pe 8	982.	00_0)1			Ту	pe 8	981.	.29_0)1	
Switching	iiiies	Siz	e	50	60	70	80	90	100	120	140	160	40	50	60	70	80	90	100	40	50	60	70	80	90	100
Connection	DC-side switching	t,	[ms]	55	55	55	55	65	70	80	90	90	15	15	15	20	20	30	30	15	15	15	20	20	30	30
time	AC-side switching	t,	[ms]	340	360	370	370	410	440	570	590	590	65	65	65	80	90	150	150	65	65	65	80	90	150	150
Response	DC-side switching	t ₁₁	[ms]	45	45	45	35	40	45	50	55	55	10	10	10	15	15	20	20	10	10	10	15	15	20	20
connection	AC-side switching	t ₁₁	[ms]	230	250	260	260	280	300	390	400	400	50	50	50	60	60	100	100	50	50	50	60	60	100	100
Separation time	e (release)	t ₂	[ms]	70	75	100	125	150	175	250	300	440	25	25	35	50	70	70	70	25	25	35	50	70	70	70

		i-					Size				
Friction work (Ja	SSIC	50	60	70	80	90	100	120	140	160
max. friction work of individual switching (110 switchings in a succession)	on J	[J]	300	325	375	550	900	950	1500	2100	3500
Dynamic braking t	torq	ue (M _{dyn-}	_{min}) in the sp	eed range							
$M_{dyn-min} = M_N$	n	[rpm]	0 - 5000	0 - 4000	0 - 3600	0 - 3200	0 - 3000	0 - 2500	0 - 2000	0 - 1700	0 - 1500
$M_{dyn-min} = M_N - 15 \%$	n	[rpm]	5000 - 7500	4000 - 6200	3600 - 5500	3200 - 4700	3000 - 4300	2500 - 3600	2000 - 2900	1700 - 2500	1500 - 2200
$M_{dyn-min} = M_N - 30 \%$	n	[rpm]	7500 - 9500	6200 - 8000	5500 - 7000	4700 - 6500	4300 - 5500	3600 - 5000	2900 - 4000	2500 - 3500	2200 - 3000
Wear (max. numbe	r of	individua	al braking ac	tions at max	. friction wo	rk in the spe	ed range)				
2000	n	[rpm]	0 - 5000	0 - 4000	0 - 3600	0 - 3200	0 - 3000	0 - 2500	0 - 2000	0 - 1700	0 - 1500
1400	n	[rpm]	5000 - 7500	4000 - 6200	3600 - 5500	3200 - 4700	3000 - 4300	2500 - 3600	2000 - 2900	1700 - 2500	1500 - 2200
1000	n	[rpm]	7500 - 9500	6200 - 8000	5500 - 7000	4700 - 6500	4300 - 5500	3600 - 5000	2900 - 4000	2500 - 3500	2200 - 3000

Eriction work I	~~					Size			
Friction work i	_ea	111	40	50	60	70	80	90	100
max. friction work of individual switching (110 switchings in a succession)	on J	[J]	150	200	230	550	650	850	1000
Dynamic braking	torq	ue (M _{dyn-}	_{min}) in the speed	range					
$M_{dyn-min} = M_N$	n	[rpm]	0 - 5000	0 - 4000	0 - 3500	0 - 3000	0 - 2500	0 - 2500	0 - 2000
$M_{dyn-min} = M_N - 15\%$	n	[rpm]	5000 - 8000	4000 - 6000	3500 - 5000	3000 - 4500	2500 - 4000	2500 - 3500	2000 - 3500
$M_{dyn-min} = M_N - 30\%$	n	[rpm]	8000 - 10500	6000 - 8500	5000 - 7000	4500 - 6500	4000 - 5500	3500 - 5000	3500 - 4500
Wear (max. numbe	r of	individua	al braking action	s at max. frictio	n work in the s	peed range)			
2000	n	[rpm]	0 - 5000	0 - 4000	0 - 3500	0 - 3000	0 - 2500	0 - 2500	0 - 2000
1400	n	[rpm]	5000 - 8000	4000 - 6000	3500 - 5000	3000 - 4500	2500 - 4000	2500 - 3500	2000 - 3500
1000	n	[rpm]	8000 - 10500	6000 - 8500	5000 - 7000	4500 - 6500	4000 - 5500	3500 - 5000	3500 - 4500

Friction work (^ ~ł	aat				Size			
	501	501	40	50	60	70	80	90	100
max. friction work of individual switching (110 switchings in a succession)	on J	[J]	25	50	80	175	200	250	350
Dynamic braking t	torq	ue (M _{dyn-}	_{min}) in the speed	range					
$M_{dyn-min} = M_N$	n	[rpm]	0 - 5000	0 - 4000	0 - 3500	0 - 3000	0 - 2500	0 - 2500	0 - 2000
$M_{dyn-min} = M_N - 15\%$	n	[rpm]	5000 - 8000	4000 - 6000	3500 - 5000	3000 - 4500	2500 - 4000	2500 - 3500	2000 - 3500
$M_{dyn-min} = M_N - 30\%$	n	[rpm]	8000 - 10500	6000 - 8500	5000 - 7000	4500 - 6500	4000 - 5500	3500 - 5000	3500 - 4500
Wear (max. numbe	r of	individua	al braking action	is at max. frictio	n work in the s	peed range)			
1000	n	[rpm]	0 - 5000	0 - 4000	0 - 3500	0 - 3000	0 - 2500	0 - 2500	0 - 2000
700	n	[rpm]	5000 - 8000	4000 - 6000	3500 - 5000	3000 - 4500	2500 - 4000	2500 - 3500	2000 - 3500
500	n	[rpm]	8000 - 10500	6000 - 8500	5000 - 7000	4500 - 6500	4000 - 5500	3500 - 5000	3500 - 4500

Dormitted Hub	Porco Ø	d						Si	ze				
Permitted Hub	bores ø	u _{1 max}		40	50	60	70	80	90	100	120	140	160
		6885/1	[mm]	-	11	13	18	18	22	30	32	42	45
Type 8980.00_00	Keyway	6885/2	[mm]	-	12	-	-	-	-	-	-	-	-
	109	6885/3	[mm]	-	-	15	20	20	25	-	35	45	50
		6885/1	[mm]	11	18	22	22	30	32	37	-	-	-
Type 8982.00_01	Keyway	6885/2	[mm]	12	-	-	-	-	-	-	-	-	-
	000	6885/3	[mm]	-	20	25	25	-	35	-	-	-	-

Keys

 $M_{Br} = Braking torque M_{L} = Load torque$

11

Headquarters

Chr. Mayr GmbH + Co. KG Eichenstraße 1, D-87665 Mauerstetten Tel.: +49 83 41/8 04-0, Fax: +49 83 41/80 44 21 www.mayr.com, E-Mail: public.mayr@mayr.com

Service Germany/Austria

Baden-Württemberg

Esslinger Straße 7 70771 Leinfelden-Echterdingen Tel.: 07 11/78 26 26 40 Fax: 07 11/78 26 26 39

Kamen Herbert-Wehner-Straße 2 59174 Kamen Tel.: 0 23 07/24 26 79 Fax: 0 23 07/24 26 74

Branch office

China

Mayr Zhangjiagang Power Transmission Co., Ltd. Fuxin Road No.1298, Yangshe Town 215637 Zhangjiagang Tel.: 05 12/58 91-75 67 Fax: 05 12/58 91-75 66 info@mayr-ptc.cn

Japan

Mayr Japan LLC 2F, 1-1-9 Nihonbashi Kakigara-cho, Chuo-ku Tokyo, 103-0014 Japan Tel.: 03/35 27-29 00 Fax: 03/35 27-26 61 public.mayr@mayr.co.jp

Representatives

Australia

Drive Systems Pty Ltd. 8/32 Melverton Drive Hallam, Victoria 3803 Australia Tel.: 0 3/97 96 48 00 info@drivesystems.com.au

South Korea

Mayr Korea Co. Ltd. 15, Yeondeok-ro 9beon-gil Seongsan-gu 51571 Changwon-si Gyeongsangnam-do. Korea Tel.: 0 55/2 62-40 24 Fax: 0 55/2 62-40 25 info@mayrkorea.com Bavaria Industriestraße 51 82194 Gröbenzell Tel.: 0 81 42/50 19 808

North Schiefer Brink 8 32699 Extertal Tel.: 0 57 54/9 20 77 Fax: 0 57 54/9 20 78

France Mayr France S.A.S. Z.A.L. du Minopole Rue Nungesser et Coli 62160 Bully-Les-Mines Tel.: 03.21.72.91.91 Fax: 03.21.29.71.77 contact@mayr.fr

Singapore

India

Taiwan

German Tech

National Engineering

Bhosari Pune 411026

Tel.: 0 20/27 13 00 29

Fax: 0 20/27 13 02 29

Component Co., Ltd.

429012 Taichung City

Tel.: +886 (4) 25150566

Fax: +886 (4) 25152413

abby@zfgta.com.tw

No.10-3, Ln. 358, Sec. 1,

Hemu Rd., Shengang Dist.,

nenco@nenco.org

Company (NENCO)

J-225, M.I.D.C.

Mayr Transmission (S) PTE Ltd. No. 8 Boon Lay Way Unit 03-06, TradeHub 21 Singapore 609964 Tel.: 00 65/65 60 12 30 Fax: 00 65/65 60 10 00 info@mayr.com.sg

Chemnitz Bornaer Straße 205 09114 Chemnitz Tel.: 03 71/4 74 18 96 Fax: 03 71/4 74 18 95

Rhine-Main Kohlhäuser Str. 3-5 36043 Fulda Tel.: 06 61/96 21 02 15

Great Britain

Mayr Transmissions Ltd. Valley Road, Business Park Keighley, BD21 4LZ West Yorkshire Tel.: 0 15 35/66 39 00 Fax: 0 15 35/66 32 61 sales@mayr.co.uk

Switzerland

Netherlands

Groneman BV

Amarilstraat 11

7554 TV Hengelo OV

Tel.: 074/2 55 11 40

Fax: 074/2 55 11 09

Czech Republic

62700 Brno

BMC - TECH s.r.o.

Hviezdoslavova 29 b

Tel.: 05/45 22 60 47

Fax: 05/45 22 60 48

info@bmc-tech.cz

aandrijftechniek@groneman.nl

Mayr Kupplungen AG Tobeläckerstraße 11 8212 Neuhausen am Rheinfall Tel.: 0 52/6 74 08 70 Fax: 0 52/6 74 08 75 info@mayr.ch

Franken

Unterer Markt 9 91217 Hersbruck Tel.: 0 91 51/81 48 64 Fax: 0 91 51/81 62 45

Austria

Pummerinplatz 1, TIZ I, A27 4490 St. Florian, Austria Tel.: 0 72 24/2 20 81-12 Fax: 0 72 24/2 20 81 89

Italy

Mayr Italia S.r.l. Viale Veneto, 3 35020 Saonara (PD) Tel.: 049/879 10 20 Fax: 049/879 10 22 info@mayr-italia.it

USA

Mayr Corporation 10 Industrial Avenue Mahwah NJ 07430 Tel.: 2 01/4 45-72 10 Fax: 2 01/4 45-80 19 info@mayrcorp.com

Poland

Wamex Sp. z o.o. ul. Pozaryskiego, 28 04-703 Warszawa Tel.: 0 22/6 15 90 80 Fax: 0 22/8 15 61 80 wamex@wamex.com.pl

Turkey

Representative Office Turkey Kucukbakkalkoy Mah. Brandium Residence R2 Blok D:254 34750 Atasehir - Istanbul, Turkey Tel.: 02 16/2 32 20 44 Fax: 02 16/5 04 41 72 info@mayr.com.tr

More representatives:

Belgium, Brazil, Canada, Colombia, Croatia, Denmark, Finland, Greece, Hongkong, Hungary, Indonesia, Israel, Luxembourg, Malaysia, Mexico,New Zealand, Norway, Philippines, Portugal, Romania, Russia, Slovakia, Slovenia, South Africa, Spain, Sweden, Thailand

You can find the complete contact details for the representative responsible for your area in the Contact section at www.mayr.com

🌐 in 🔏 f 🖻 🞯

dones lussia,

05/10/2023 GF/STE