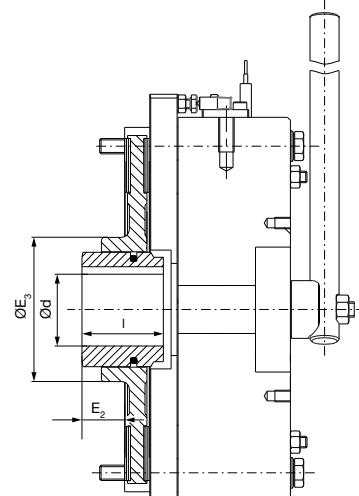


ROBA®-twinstop® Type 8012..._3


Sizes 125 up to 225

Design with rotating hand release manually actuated

Design for splined motor shaft

Hub design

Dimensions	Size			
	125	180	225	
Nominal braking torque	2 x 125	2 x 180	2 x 225	2 x 250
A ⁺⁴	200	200	200	200
A ₂ ⁺²	212	237	267	267
B	85,6	92,6	97,6	97,6
B ₁	10	11	10	10
B ₂	18	15,5	20	20
C	110	110	110	110
C ₁	170	195	225	225
DIN 5480 ¹⁾	45 x 2 x 21	50 x 2 x 24	55 x 2 x 26	55 x 2 x 26
d _{min} [*]	32	42	45	45
d _{max}	37	45	53	52
D	25	25	25	25
D ₁ ^{+0,1}	65	65	65	65
E	12	13,5	10,5	14,5
E ₁	75	92	92	110
E ₂	22	22	20	20
E ₃	75	92	92	110
F	90	90	90	90
L ₁	233	233	273	273
f	2 x M6 (8 deep)			
K	13	16	15,5	15,5
I	42	46	50	50
r	122	145	145	180
R	181	196	196	222,5
s	4 x M8	4 x M8	4 x M10	4 x M10

1) Directly splined motor shaft
Type 8012..._0 _3
other splines on request

*) **Attention:** In particular for small shaft diameters, you may be required to submit a strength verification for the shaft end to the TÜV (Technical Inspectorate)!

We reserve the right to make dimensional and constructional alterations.

Technical Data	Size			
	125	180	225	
Nominal braking torque	Type 8012.0..._3	M _{nom}	[Nm]	2 x 125
reduced braking torques up to:	Type 8012.3..._3	M	[Nm]	2 x 90
Electrical nominal power	Type 8012.0..._3	P ₂₀	[W]	2 x 64
Weight (without hub)			[kg]	21,6
Maximum speed in the application range elevator		n _{max}	[rpm]	800
Nominal air gap (Tolerance +0,15/-0,05)		a	[mm]	0,45

Release monitoring function

Release monitoring prevents unpermitted operating conditions such as for example starting up against a closed brake. *mayr®* power transmission, international leaders in safety brakes for safety-critical applications such as for example passenger elevators or vertical axes, now provides a contactless system with inductive proximity switches for its safety brakes as an alternative to the tried and tested release monitoring system with microswitches.

Usable also as wear monitoring

In almost all applications, the inductive proximity switch is used for release monitoring. However, it can also be used as a wear monitoring device.

Maximum reliability

As there are no mechanical parts involved, the lifetime of this new, contactless release monitoring system is not dependent on the switching frequency. The system is **magnetic field** resistant and works **absolutely reliably** and **wear-free**. It is also resistant to impacts and vibrations, as there are no movable parts, and the electronics are completely encapsulated.

Same installation dimensions – Differences in electrical connection

Compatible and interchangeable

The contactless release monitoring has exactly the same installation dimensions as the microswitch design. Both systems are interchangeable.

The detail pictures below show a ROBA-stop®-silenzio® with proximity switch release monitoring (left) and microswitch release monitoring (right).

Contactless release monitoring with inductive proximity switches

Electrical Connection

The **release monitoring with microswitch** requires only two lines as NC or NO contact. Only when used as a change-over contact, three lines are necessary.

The **contactless release monitoring** always requires three lines – one each for the voltage

Release Monitoring with Microswitch