Please read these Operational Instructions carefully and follow them accordingly!

Ignoring these Instructions may lead to malfunctions or to coupling failure, resulting in damage to other parts.

Contents:

Page 1: -	Contents
-	Safety and Guideline Signs Safety Regulations Type tag
	Summary of Constructional Designs for Sizes 16 to 160 Parts List (Sizes 16 – 160)
	Summary of Constructional Designs for Sizes 180 to 2200 Parts List (Sizes 180 – 2200)
Page 5: -	Table 1: Technical Data for Sizes 16 to 160
Page 6: -	Table 2: Technical Data for Sizes 180 to 2200
	Table 3: Transmittable Torques on Clamping Ring Hubs Table 4: Transmittable Torques on Clamping Hubs
Page 8: -	Tables 5 and 6: Transmittable Torques on Shrink Disk Hubs
Page 9: -	Table 7: Transmittable Torques on Split Clamping Hubs
-	Function - Application State of Delivery Temperature Resistance Storage Installation Position
	Guidelines on Hub Bore and Shaft Hub Installation
Page 12: -	Hub Installation
Page 13: -	Coupling Installation
Page 14:	Multi-Gateway Installation
	Coupling Alignment Permitted Shaft Misalignments
-	Balancing the Coupling Diagram 1: Balancing Coupling with Sleeve S/CRD/CFRP Diagram 2: Permitted Speeds for Sleeve S
	Diagram 3: Permitted Speeds for Sleeve CRD Diagram 4: Permitted Speeds for Sleeve CFRP
-	Maintenance Disposal Malfunctions / Breakdowns

08/07/2024 TK/GH/HH/GC/GF

(B.9.7.EN)

Safety and Guideline Signs

CAUTION

Danger of injury to personnel and damage to machines.

Please Observe! Guidelines on important points.

Attention!

Possible property damage can be the consequence.

Observe the safety regulations in the installation and operational instructions for the multi-gateway!

Safety regulations

These Installation and Operational Instructions (I + O) are part of the clutch delivery. Please keep them handy and near to the clutch at all times.

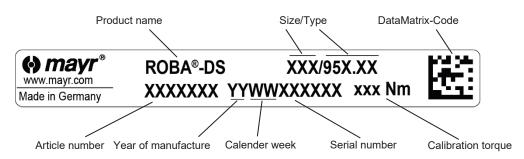
It is forbidden to start initial operation of the product until you have ensured that all applicable EU directives and directives for the machine or system, into which the product has been installed, have been fulfilled. At the time these Installation and Operational Instructions go to print, the ROBA®-DS couplings accord with the known technical specifications and are operationally safe at the time of delivery. Without a conformity evaluation, this product is not suitable for use in areas where there is a high danger of explosion. This statement is based on the ATEX directive.

□ If the ROBA[®]-DS couplings are modified.

If the relevant standards for safety and / or installation conditions are ignored.

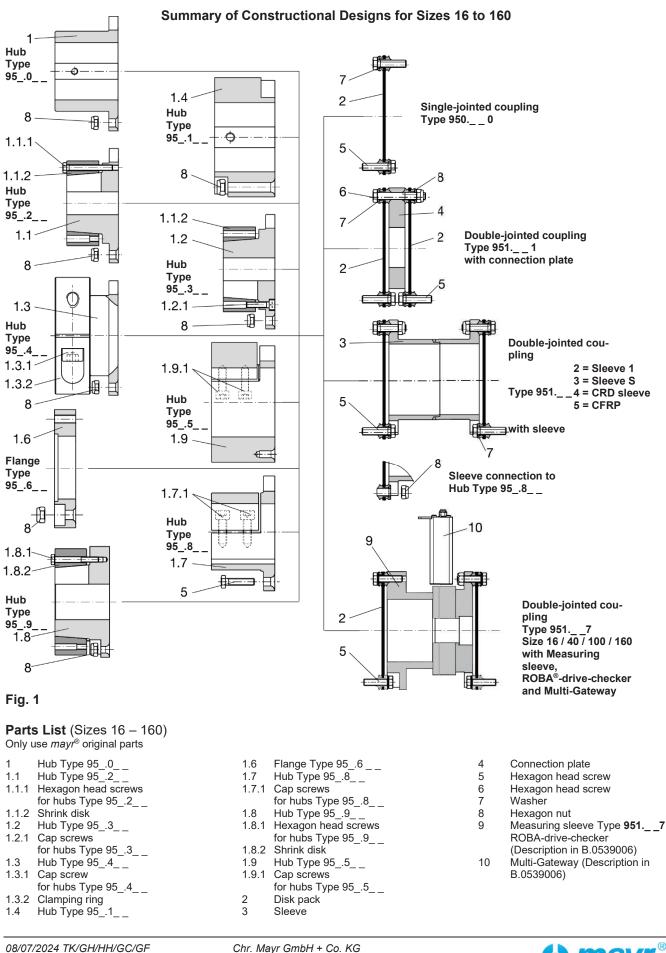
User-implemented Protective Measures

Cover all moving parts to protect against seizure, dust impacts or foreign body impact.

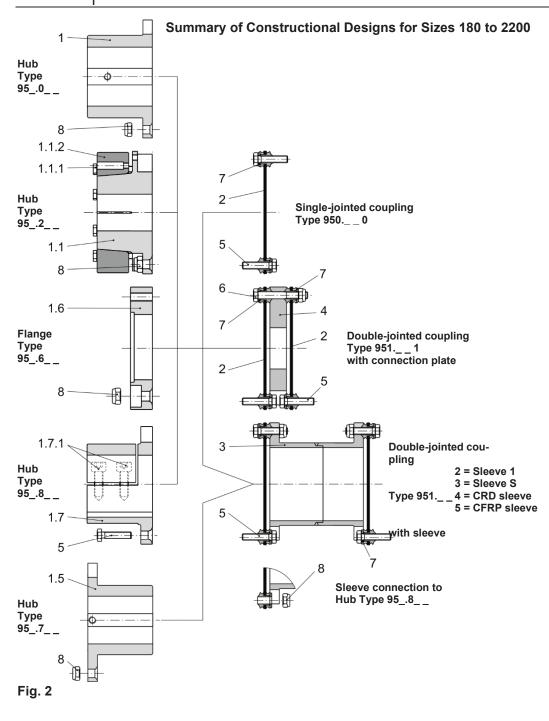

C Replace self-locking hexagon nuts when they become ineffective after frequent loosening and tightening.

To prevent injury or damage, only specialist personnel are allowed to work on the components. They must be familiar with the dimensioning, transport, installation, initial operation, maintenance and disposal according to the relevant standards and regulations.

Please read the Installation and Operational Instructions carefully prior to installation and initial operation of the device.


These Safety Regulations are user hints only and may not be complete!

Type tag


Installation and Operational Instructions for ROBA[®]-DS Couplings Type 95⁰₁. _ _ _ (disk pack HF) Sizes 16 – 2200 (B.9.7.EN)

Eichenstraße 1, D-87665 Mauerstetten, Germany Phone: +49 8341 804-0, Fax: +49 8341 804-421 www.mayr.com, email: public.mayr@mayr.com

your reliable partner

Installation and Operational Instructions for ROBA[®]-DS Couplings Type 95_1^0 . _ _ _ (disk pack HF) Sizes 16 – 2200 (

Parts List (Sizes 180 – 2200) Only use *mayr*[®] original parts

- 1 Hub Type 95_.0__
- 1.1 Hub Type 95_.2_ 1.1.1 Hexagon head screws
- for hubs Type 95_.2_
- 1.1.2 Shrink disk
- 1.5 Hub Type 95_.7_ _
- 1.6 Flange Type 95_.6_ _
- 1.7 Hub Type 95_.8_ _

08/07/2024 TK/GH/HH/GC/GF

2 Disk pack

- 3 Sleeve
- 4 Connection plate
- 5 Hexagon head screw
- 6 Hexagon head screw
- 7 Washer
- 8 Hexagon nut

Chr. Mayr GmbH + Co. KG Eichenstraße 1, D-87665 Mauerstetten, Germany Phone: +49 8341 804-0, Fax: +49 8341 804-421 www.mayr.com, email: public.mayr@mayr.com

^{1.7.1} Cap screws for hubs Type 95_.8_ _

Table 1: Technical Data for Sizes 16 to 160

ROBA [®] -	DS Size	16	25	40	64	100	160
d _{P max} Hub Type 950 (1)	[mm]	32	40	50	55	70	80
d _{G max} Hub Type 95 .1 (1.4)	[mm]	45	55	65	75	95	110
d _{s max} Hub Type 952/3 (1.1/2)	[mm]	26	36	45	45	55	65
d _{KR max} Hub Type 95 .4 (1.3)	[mm]	35	40	45	55	68	80
d _{K max} Hub Type 955 (1.9)	[mm]	45	52	60	70	90	100
d _{H max} Hub Type 958 (1.7)	[mm]	28	32	40	45	60	75
d _{SG max} Hub Type 95 .9 (1.8)	[mm]	45	52	60	70	90	100
Coupling nominal torque T _{KN} ¹⁾	[Nm]	190	290	450	720	1000	1600
valid for changing load direction							
as well as for max. permitted							
shaft misalignment	I I I	0.05	405	075	4000	4500	0.400
Coupling peak torque T _{KS}	[Nm]	285	435	675	1080	1500	2400
valid for unchanging load direction, max. load cycles $\leq 10^5$							
Max. speed n _{max}	[rpm]	13600	11800	10100	8500	7300	6200
Distance dimension "S"	[mm]		7.2 ±0.2	8.4 ±0.2	9.6 ±0.25		
Axial displacement $\Delta K_a^{(2)}$		7.1 ±0.2 ±1.1	1.2 ±0.2 ±1.3	0.4 ±0.2 ±1.5	9.0 ±0.25 ±1.8	10 ±0.25 ±2.1	11.6 ±0.25 ± 2.5
Values refer to couplings with	[mm]	Ξ1.1	±1.5	±1.5	±1.0	IZ.1	± 2.5
2 disk packs. Only permitted as a static or virtually							
static value.							
Radial misalignment ΔK_r for Type 9511	[mm]	0.3	0.3	0.4	0.45	0.45	0.55
Radial misalignment ΔK_r for Type 951. 2	[mm]	1.0	1.2	1.5	1.8	2.1	2.2
Radial misalignment ΔK_r for Type 951. 3 ²⁾	[mm]			(H _s – S) x 1			
Radial misalignment for single-jointed coupling	[]	If there	is only one di	isk pack, the		e aligned pre	eciselv.
Angular misalignment ΔK_w per disk pack ²⁾	[°]	1	1	1 1	1	1	1
Hexagon head screws Item 1.1.1		M5x30	M5x35	M5x40	M6x45	M8x50	M8x55
(Hub Type 952)							
Tightening torque	[Nm]	6	6	8.5	10	25	25
Cap screws Item 1.2.1		M5x18	M5x18	M5x20	M6x20	M8x22	M8x25
(Hub Type 953)							
Tightening torque	[Nm]	6	6	8.5	10	25	25
Cap screws Item 1.3.1		M8x25	M10x30	M12x35	M14x40	M16x50	M18x55
(Hub Type 954)	Th Luc 1	4.4	00	4.45	000	055	405
Tightening torque	[Nm]	41	83	145	230	355	485
Cap screws Item 1.7.1 (Hub Type 958)		M6x18	M8x25	M8x25	M10x30	M12x35	M12x35
Tightening torque	[Nm]	14.9	24	36	71	102	122
Hexagon head screws Item 1.8.1	נואוון	M5x30	M5x35	M5x40	M6x45	M8x50	M8x55
(Hub Type 959)		IVI3X30	1013X33	1013740	1010243	1010230	100000
Tightening torque	[Nm]	6	6.5	8.5	14	25	32
Cap screws Item 1.9.1	[]	M6x25	M8x25	M10x35	M12x40	M12x45	M14x50
(Hub Type 95.5)							
Tightening torque	[Nm]	17.4	42	83	122	143	220
Hexagon head screws Item 5		M5x23	M5x23	M6x25	M8x30	M8x30	M10x40
Hexagon nut Item 8							
Tightening torque	[Nm]	8.5	8.5	14	35	35	69
Hexagon head screws Item 5		M5x45	M5x50	M6x65	M8x70	M8x80	M10x90
Hexagon nut Item 8 (for hub Type 951)							
Tightening torque	[Nm]	8.5	8.5	14	35	35	69
Hexagon head screws Item 5		M5x18	M5x20	M6x22	M8x30	M8x30	M10x35
Hexagon nut Item 8 (for hub Type 955)	Th local	0.5	0.5		05	0.5	
Tightening torque	[Nm]	8.5 MEx2E	8.5	14 M6x45	35 M8x50	35 M8xE0	69
Hexagon head screws Item 6		M5x35	M5x35	M6x45	M8x50	M8x50	M10x65
Hexagon nut Item 8	[NIm]	8.5	8.5	14	35	35	60
Tightening torque Adjusting screws for hub Type 95 .0	[Nm]			14 M6	35 M8		69 M12
Adjusting screws for hub Type 950 with hub bore		M5 M6 ≤22 >22	M5 M6 ≤22 >22		IVI8	M10	M12
Tightening torque	[Nm]	≤22 >22 2 4.1	2 4.1		8.5	14	35
Adjusting screws for hub Type 951		2 4.1 M8	2 4.1 M8	4.1 M10	0.5 M10	M12	M12
		1010	1010			I IVI I 🗠	I IVII∠

 For split clamping hubs (Type 95_.8_ _), the following applies: Valid for unchanging load direction as well as for max. permitted shaft misalignment. When the load direction changes, max. 60% of the stated nominal torque is permitted.

2) For Types 951.__4 and 951.__5, the permitted shaft misalignments must be reduced to one-third of the Table values.

Table 2: Technical Data for Sizes 180 to 2200

ROBA®	DS Size	180	300	500	850	1400	2200
d _{P max} Hub Type 950 (1)	[mm]	75	90	105	120	140	170
d _{S max} Hub Type 952/3 (1.1/2)	[mm]	75	85	100	120	140	170
d _{Pi max} hub Type 957 (1.5)	[mm]	55	70	85	95	110	130
d _{H max} Hub Type 958 (1.7)	[mm]	65	80	95	110	120	150
Coupling nominal torque $T_{KN}^{(1)}$ valid for changing load direction as well as for max. permitted shaft misalignment	[Nm]	2100	3500	5800	9500	15000	24000
Coupling peak torque T_{KS} valid for unchanging load direction, max. load cycles $\le 10^5$	[Nm]	3150	5250	8700	14250	22500	36000
Max. speed n _{max} (only on Types 958 / 95 8 _)	[rpm]	7300 (5100)	6200 (4300)	5200 (3600)	4400 (3100)	3800 (2600)	3300 (2300)
Distance dimension "S"	[mm]	11.2 ±0.25	11.2 ±0.25	12 ±0.25	14 ±0.25	16 ±0.25	17.8 ±0.25
Axial displacement $\Delta K_a^{(2)}$ Values refer to couplings with 2 disk packs. Only permitted as a static or virtually static value.	[mm]	±1.0	±1.2	±1.4	±1.6	±1.9	±2.2
Radial misalignment ΔK, for Type 951 1	[mm]	0.25	0.25	0.35	0.4	0.5	0.55
Radial misalignment ΔK, for Type 9512	[mm]	1.2	1.25	1.35	1.7	2	2.6
Radial misalignment ΔK_r for Type 951 3 ²⁾	[mm]	(H _S – S) x 8.73 x 10 ⁻³					
Radial misalignment for single-jointed coupling		If there is only one disk pack, the shafts must be aligned precisely.					
Angular misalignment ΔK_w per disk pack ²⁾	[°]	0.5	0.5	0.5	0.5	0.5	0.5
Hexagon head screws Item 1.1.1 (Hub Type 952) Tightening torque	[Nm]	M8x55 25	M8x60 35	M10x70 56	M12x80 93	M14x100	M14x120 196
Cap screws Item 1.7.1 (Hub Type 958) Tightening torque	[Nm]	M10x35 48	M12x40 83	M14x45 133	M16x55 200	M20x60 410	M20x70 450
Hexagon head screws Item 5 Hexagon nut Item 8 Tightening torque	[Nm]	M10x40 69	M12x40 120	M16x50 240	M20x60 450	M24x70 760	M24x75 900
Hexagon head screws Item 6 Hexagon nut Item 8 Tightening torque	[Nm]	M10x60 69	M12x65	M16x75 240	M20x95 450	M24x110 760	M24x120 900
Adjusting screws for hub Type 950 with hub bore		M12 M10 ≤ 65 > 65	M12	M12	M16	M16	M16
Tightening torque	[Nm]	35 14	35	35	90	90	90
Adjusting screws for hub Type 957 Tightening torque	[Nm]	M10 14	M12 35	M12 35	M16 90	M16 90	M16 90

1)

For split clamping hubs (Type 95_.8__), the following applies: Valid for unchanging load direction as well as for max. permitted shaft misalignment.

The split clamping hubs are only available with keyway acc. DIN 6885. They transmit only 30 - 40 % of the value T_{KN} using frictional locking.

Larger torques are transmitted via positive locking with the key.

The hubs are not suitable for changing load direction.

2) For Types 951. __4 and 951. __5, the permitted shaft misalignments must be reduced to one-third of the Table values.

Installation and Operational Instructions for ROBA[®]-DS Couplings Type 95_1^0 . _ _ _ (disk pack HF) Sizes 16 – 2200

	- dependent on bore - suitable for H7/n6 - Sizes 16 to 160								
		Size							
Bore	16	25	40	64	100	160			
Ø20	126	-	-	-	-	-			
Ø22	138	199	-	-	-	-			
Ø25	168	226	327	-	-	-			
Ø28	201	253	366	523	-	-			
Ø30	216	290	420	561	-	-			
Ø32	230	325	470	598	785	-			
Ø35	251	355	515	700	859	-			
Ø38	-	386	559	798	932	-			
Ø40	-	406	588	840	1050	1256			
Ø45	-	-	661	945	1240	1413			
Ø50	-	-	-	1050	1378	1680			
Ø55	-	-	-	1155	1516	1940			
Ø60	-	-	-	-	1654	2117			
Ø65	Attention!	Please observe the pe		-	1792	2293			
Ø68		torques of the coupling	g size used.	-	1874	2399			
Ø70	-	-	-	-	-	2470			
Ø80	-	-	-	-	-	2822			

Table 3:Transmittable Torques on Clamping Ring Hubs (1.3)
- dependent on bore - suitable for H7/h6 - Sizes 16 to 160

Table 4:Transmittable Torques on Clamping Hubs (1.9)- dependent on bore - suitable for H7/h6 - Sizes 16 to 160

	Size							
Bore	16	25	40	64	100	160		
Ø20	183	-	-	-	-	-		
Ø22	202	354	-	-	-	-		
Ø25	229	402	604	-	-	-		
Ø28	257	450	677	821	-	-		
Ø30	275	483	725	880	-	-		
Ø32	293	515	773	938	1102	-		
Ø35	321	563	846	1026	1205	-		
Ø38	348	611	918	1114	1309	-		
Ø40	367	643	967	1173	1378	1839		
Ø42	385	676	1015	1232	1447	1931		
Ø45	412	724	1087	1319	1550	2069		
Ø48	-	772	1160	1407	1653	2207		
Ø50	-	804	1208	1466	1722	2299		
Ø52		836	1257	1525	1791	2391		
Ø55	-	-	1329	1613	1894	2529		
Ø60	-	-	1450	1759	2066	2759		
Ø65	-	-	-	1906	2239	2989		
Ø68	-	-	-	1994	2342	3127		
Ø70	-	-	-	2053	2411	3219		
Ø75	-	-	-	-	2583	3449		
Ø80	-	-	-	-	2755	3679		
Ø85		Please observe the p		-	2927	3909		
Ø90		torques of the couplin	ig size used.	-	3100	4139		
Ø95	-	-	-	-	-	4369		
Ø100	-	-	-	-	-	4599		

Page 7 of 18

Installation and Operational Instructions for ROBA[®]-DS Couplings Type 95_1^0 . _ _ _ (disk pack HF) Sizes 16 – 2200

	-		01 117/90 - 01263					
	Size							
Bore	16	25	40	64	100	160		
Ø25	339	-	-	-	-	-		
Ø28	404	-	-	-	-	-		
Ø30	448	-	-	-	-	-		
Ø32	492	526	-	-	-	-		
Ø35	558	602	-	-	-	-		
Ø38	620	679	-	-	-	-		
Ø40	659	730	873	-	-	-		
Ø42	694	780	937	-	-	-		
Ø45	738	851	1036	1268	-	-		
Ø48	-	913	1132	1394	-	-		
Ø50	-	948	1195	1480	-	-		
Ø52	-	978	1255	1565	-	-		
Ø55	-	-	1338	1691	2074	-		
Ø60	-	-	1454	1890	2366	-		
Ø65	-	-	-	2065	2658	3246		
Ø70	-	-	-	2204	2943	3618		
Ø75	Attention	Diagon observe the n	armitted equaling	-	3213	3991		
Ø80	Attention!	Attention! Please observe the per torques of the coupling		-	3458	4353		
Ø85			y size useu.	-	3666	4695		
Ø90	-	-	-	-	3828	5007		
Ø100	-	-	-	-	-	5497		

Table 5:Transmittable Torques on Shrink Disk Hubs, Large (1.8)
- dependent on bore - suitable for H7/g6 - Sizes 16 to 160

Table 6:Transmittable Torques on Shrink Disk Hubs (1.1/1.2)
- dependent on bore - suitable for H7/g6 - Sizes 16 to 2200

	Size											
Bore	16	25	40	64	100	160	180	300	500	850	1400	2200
Ø14	158	-	-	-	-	-	-	-	-	-	-	-
Ø16	186	-	-	-	-	-	-	-	-	-	-	-
Ø20	240	283	-	-	-	-	-	-	-	-	-	-
Ø22	269	320	-	-	-	-	-	-	-	-	-	-
Ø25	312	375	429	-	-	-	-	-	-	-	-	-
Ø28	-	428	495	-	-	-	-	-	-	-	-	-
Ø30	-	468	546	704	-	-	-	-	-	-	-	-
Ø32	-	509	600	769	-	-	-	-	-	-	-	-
Ø35	-	568	669	863	1057	-	-	-	-	-	-	-
Ø38	-	-	741	960	1176	-	-	-	-	-	-	-
Ø40	-	-	796	1031	1269	1783	-	-	-	-	-	-
Ø42	-	-	852	1104	1366	1919	2234	-	-	-	-	-
Ø45	-	-	932	1206	1500	2107	2453	-	-	-	-	-
Ø50	-	-	-	-	1692	2400	2794	3569	-	-	-	-
Ø55	-	-	-	-	1889	2680	3150	4024	-	-	-	-
Ø60	-	-	-	-	-	2967	3488	4500	5970	-	-	-
Ø65	-	-	-	-	-	3263	3835	5177	6629	-	-	-
Ø68	-	-	-	-	-	-	4072	5658	7108	-	-	-
Ø70	-	-	-	-	-	-	4255	6334	7500	10723	-	-
Ø75	-	-	-	-	-	-	4627	7348	8156	11719	-	-
Ø80	-	-	-	-	-	-	-	8453	8830	12750	17942	-
Ø85	-	-	-	-	-	-	-	9652	9523	13750	19444	-
Ø90	-	-	-	-	-	-	-	-	10234	14777	21000	-
Ø100	-	-	-	-	-	-	-	-	11542	16665	23683	29036
Ø110	-	-	-	-	-	-	-	-	-	18607	26442	32418
Ø120	Attent	ionl	Diagon abr	l ann (a tha n	ormitted o	ounling	-	-	-	20603	29279	35896
Ø130	Attention! Please observe the permitted coupling torgues of the coupling size used.				-	-	-	-	32195	39471		
Ø140	torques of the coupling size used.					-	-	-	-	35191	43144	
Ø150	-	-	-	-	-	-	-	-	-	-	-	46920
Ø160	-	-	-	-	-	-	-	-	-	-	-	50798
Ø170	-	-	-	-	-	-	-	-	-	-	-	54783

Page 8 of 18

Chr. Mayr GmbH + Co. KG Eichenstraße 1, D-87665 Mauerstetten, Germany Phone: +49 8341 804-0, Fax: +49 8341 804-421 <u>www.mayr.com</u>, email: <u>public.mayr@mayr.com</u>

Installation and Operational Instructions for ROBA[®]-DS Couplings Type 95_1^0 . _ _ _ (disk pack HF) Sizes 16 – 2200

	 dependent on bore - suitable for H7/g6 - Sizes 16 to 160 									
		Size								
Bore	16	25	40	64	100	160				
Ø18	130	-	-	-	-	-				
Ø20	144	-	-	-	-	-				
Ø22	158	198	-	-	-	-				
Ø25	180	225	326	-	-	-				
Ø28	202	252	365	-	-	-				
Ø30	-	270	391	623	-	-				
Ø32	-	288	418	665	-	-				
Ø35	-	-	457	727	897	-				
Ø38	-	-	496	790	973	-				
Ø40	-	-	522	831	1025	1218				
Ø42	-	-	-	873	1076	1279				
Ø45	-	-	-	935	1153	1370				
Ø50	-	-	-	-	1281	1522				
Ø55	-	-	-	-	1409	1675				
Ø60	Attention!	Please observe the p	ormitted coupling	-	1537	1827				
Ø65	Alternion	torques of the couplin		-	-	1979				
Ø68	-	-		-	-	2071				
Ø70	-	-	-	-	-	2131				
Ø75	-	-	-	-	-	2284				

Table 7:Transmittable Torques on Split Clamping Hubs (1.7)- dependent on bore - suitable for H7/g6 - Sizes 16 to 160

Page 9 of 18

Function – Application

ROBA[®]-DS couplings are shaft connections for torsionally rigid, backlash-free torque transmission. At the same time they compensate for angular misalignments and axial displacements on single-jointed couplings (Type 950.___), and additionally for radial misalignments on double-jointed couplings (Type 951.___).

State of Delivery

The ROBA®-DS couplings are delivered in individual parts and pre-assembled units.

All screw connections must be checked and pre-tensioned during the final installation to a torque value according to Table 1 and Table 2.

Except for the disk pack (2), all parts are phosphated and therefore have a basic corrosion protection.

All hub designs can be delivered either pilot bored or finish bored. The preferred bore tolerance is H7; deviating bores are possible (please contact the manufacturer).

The key hubs (Items 1, 1.4 and 1.5) additionally have a keyway acc. DIN 6885 sheet 1 or 3, as well as an adjusting screw for axial securement.

The split clamping hub (Item 1.7) on Sizes 180 to 2200 is also additionally designed with a keyway according to DIN 6885 sheet 1 or 3.

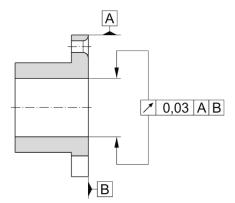
Temperature Resistance

Due to their all-steel design, ROBA®-DS couplings are temperature-resistant within a range from -40 °C up to +250 °C. Couplings with CFRP sleeves can be used in the temperature

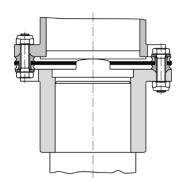
range from -20°C to +80 °C. Couplings with measuring sleeve ROBA[®]-drive-checker (9) and Multi-Gateway (10) can be used in the temperature range from -20 °C to +60 °C.

Storage

The couplings are delivered preserved and can be stored in dry rooms protected from the weather for 6 to 9 months.



Damp storage rooms are not suitable. In order to exclude condensation, the relative air humidity should ideally total maximum 65 %.


Installation Position

ROBA[®]-DS couplings are designed for horizontal installation. In case of vertical or inclined installation, on long sleeves (sleeves S/CRD/CFRP) the sleeve's own weight must be supported with a vertical support (Fig. 4).

This vertical support including both centerings in the hub and in the sleeve is produced at the place of manufacture.

Guidelines on Hub Bore and Shaft

General Guidelines:

- □ The maximum bore diameter according to Tables 1 and 2 may not be exceeded.
- The hub bores are usually produced with tolerance H7. The required shaft tolerance depends on the hub type used as well as on the basic overall load configuration.

- Shrink disk hubs/Clamping ring hubs/Split clamping hubs/Clamping hubs: h6/g6

- Key hubs:

r6/s6 (alternating rotational direction), k6/n6 (one-way rotational direction)

- □ The recommended bore tolerances are to be produced using the position and tolerance width as references; at the same time, please keep to the shaft run-out and axial run-out tolerances of 0.03 mm (see Fig. 3).
- □ After producing the finish bore, please clean it using suitable cleaning agents.
- The shaft surfaces should be finely turned or ground (Ra = 0.8 µm).
- The required yield point for the shafts used is at least 350 N/mm² (St60, St70, C45, C60).

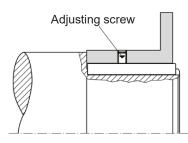


Fig. 5

Please observe the following when boring the hub with keyway (Items 1, 1.4, 1.5 and 1.7) Types 95_.0_ / 95_.1_ / 95_.7_ and 95_.8_ :

The specified form (DIN 6885 sheet 1 or 3) and position of the keyway.

Position of the keyway on Type:

- 95_.0_ (Item. 1) aligned with a fixing hole.
- 95_.1_ (Item 1.4) 25° offset to a fixing hole.
- 951.7_ (Item 1.5) 45° offset to a fixing hole.
- For axial securement, please provide an additional adjusting screw (ISO 4029 - 45H) as an alternative to a press cover (see Figs. 5 and 6).

The adjusting screw dimensions and tightening torques stated in Tables 1 and 2 must be kept to.

On split clamping hubs (1.7), no axial securement is necessary.

Please observe the following when boring the shrink disk and clamping ring hubs (Items 1.1, 1.2, 1.3 and 1.8) Types 95_.2_ / 95_.3_ / 95_.4_ and 95_.9_ :

- □ The shrink disk hubs or clamping ring hubs are generally delivered greased and pre-assembled. For production of the finish bore, the clamping ring or the shrink disk is de-installed and the hub is de-greased.
- Deburr the hubs, in particular in the area of the slots.
- Clean and re-grease the hubs in the clamping ring or shrink disk contact areas.
 Permitted grease: Klüber Alltemp QNB 50

Hub Installation

The configuration of the different individual components can be seen in Figs.1 and 2.

Hub Installation Types 95_.2_ / 95_.3_ / 95_.9 __ (Hubs with Shrink Disk) and Types 95_.4_ (Hubs with Clamping Ring)

 The force transmission of the shrink disk hubs or the clamping ring hubs (1.1/1.2/1.3/1.8) takes place using frictional

locking. The contact surfaces between the shrink disk and the hub as well as between the clamping ring and the hub are greased manufacturer-side.

- The hub bores and the shaft ends must be completely grease-free during installation. Greasy or oily bores or shafts do not transmit the maximum coupling torque.
- Please make sure that the key sits securely for designs with keyway.
- □ The hub and the shrink disk (1.1.2/1.8.2) or the clamping ring (1.3.2) must be completely relaxed; if necessary, loosen the screws (1.1.1/1.2.1/1.3.1/1.8.1) by several thread turns.

Hub Installation Types 95_.2_ / 95_.3_ / 95_.9 __ (Hubs with Shrink Disk)

- a) Mount the hubs (1.1/1.2/1.8) onto the shafts using a suitable device and bring them into the correct position.
- b) Tighten the tensioning screws (1.1.1/1.2.1/1.8.1) using a torque wrench evenly and **one after the other in 3 to max. 6 tightening sequences** to the torque stated in Tables 1 or 2.

For de-installation:

- a) Loosen all tensioning screws (1.1.1/1.2.1/1.8.1) in several sequences by several thread turns.
- b) Screw out the tensioning screws located next to the tapped extracting holes and screw them into the tapped extracting holes up to their limits.

On Sizes 180 - 2200, only one hub with outer clamping is offered. Additional threads are provided on the hub (1.1/1.8) as well as on the shrink disk (1.1.2/1.8.2) in order to extract the shrink disk (1.1.2/1.8.2).

Please take the axial space requirements for the tensioning screws to be screwed into the tapped extracting holes into account (length of the hexagon head screws Item 1.1.1 / Item 1.8.1, see Tables 1 and 2).

c) Tighten the tensioning screws (1.1.1/1.2.1/1.8.1) evenly and step-wise so that the shrink disk (1.1.2/1.8.2) is loosened from the hub.

Hub Installation Type 95_.4_ (Hubs with Clamping Ring)

- a) Mount the hubs (1.3) onto the shafts using a suitable device and bring them into the correct position.
- b) Tighten the clamping screw (1.3.1) using a torque wrench to the torque stated in Table 1.

08/07/2024 TK/GH/HH/GC/GF

Installation and Operational Instructions for ROBA[®]-DS Couplings Type 95_1^0 . _ _ _ (disk pack HF) Sizes 16 – 2200

Hub Installation Type 95_.5_ (Clamping Hubs)

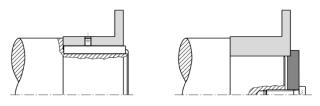
- The hub bores and the shaft ends must be completely grease-free during installation. Greasy or oily bores or shafts do not transmit the maximum coupling torque.
- □ The shafts must not have a keyway.

The clamping hub (1.9) must be completely relaxed; if necessary, loosen the screws (1.9.1) by several thread turns.

- a) Mount the hubs (1.9) onto the shafts using a suitable device and bring them into the correct position.
- b) Tighten the clamping screws (1.9.1) using a torque wrench to the torque stated in Table 1.

Hub Installation Types 95_.0_ / 95_.1_ / 951.7_ (Hubs with Keyway)

- a) Mount the hubs (1 / 1.4 / 1.5) onto the shafts using a suitable device and secure them axially (Fig. 6).
 Axial securement takes place using a set screw (adjusting screw), which presses radially onto the key; or via a press cover and a screw, screwed into the shaft threaded center hole.
- b) The key must lie over the entire length of the hub.
- c) Please make sure that the key sits securely in the shaft.


Hub or Coupling Installation Type 95_.8_ _ (Split Clamping Hubs)

On Type 950.8_0, no radial installation is possible due to the angular correlation of both hubs (1.7).

On Type 951.8__, radial installation is only possible if the half-shell is axially moved by a minimum dimension "a" (Fig. 8 / Table 8).

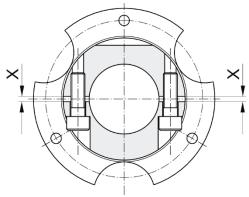

- a) Partly assemble the coupling, observing the Point "Coupling Installation" (page 13).
- b) Loosen the pre-assembled half-shells from the hubs (1.7), making sure that their correlation to the hub is maintained.
- c) Place the coupling from above onto the shafts and pre-assemble it with the respective half-shells (Fig. 8).
- Tighten the cap screws (1.7.1) cross-wise and in several tightening sequences to the tightening torque stated in Table 1.
 Please make sure that the gap "X" (Fig. 7) has the same size on both hub sides.
 If necessary, re-adjust it.

Table 8: Minimum Dimension "a" [mm]

Size	Types 951 2 / 3 / 4 / 5 (Sleeve)	Type 951 1 (Connection plate)
16	0	3.5
25	0	1.5
40	0	1
64	0	3
100	0	2.5
160	0	8
180	1.5	7.5
300	1.5	9.5
500	3	10
850	4.5	14
1400	2	15
2200	5	18

Axial displacement Half-shell Axial displacement

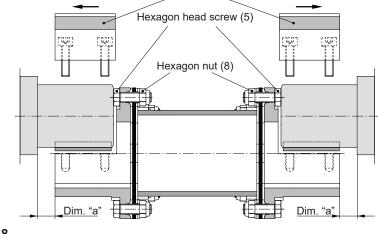


Fig. 8

Installation and Operational Instructions for ROBA[®]-DS Couplings Type 95⁰₁. _ _ _ (disk pack HF) Sizes 16 – 2200

(B.9.7.EN)

Coupling Installation (Figs. 1, 2 and 9)

Only a thin oil film is permitted on the contact surfaces of the disk packs (Fig. 9, detail "X"). If applicable, thick layers of preservative must be removed before installation.

The disk packs (2) are screwed together **alternately** with the sleeve (3) and the hubs or the connection plate (4) / measuring sleeve (9) using lightly oiled hexagon head screws (5 and 6), washers (7) and hexagon nuts (8).

The hexagon nuts (8) or the hexagon head screws (5 and 6) must be tightened in several steps to their full tightening torque acc. Tables 1 or 2. Please see Table 9 for the respective tightening torques for each step.

Starting with construction size 180, the hexagon nuts (8) and the hexagon head screws (5 and 6) on each connection side must be tightened **cross-wise**.

Table 9

Step	Tightening torque for hexagon nuts (8) or hexagon head screws (5 and 6)
1	30 % of the nominal tightening torque
2	60 % of the nominal tightening torque
3	100 % of the nominal tightening torque

The disk pack (2) must not under any circumstances be distorted when applying the pre-tension force.

The disk pack (2) is always to be inserted in such a way that the collar bushing radius (part 2a, Fig. 9, detail "X") lies in the hub grooves, the sleeve grooves or the connection plate grooves.

Due to the enlarged diameter of the shrink disks (1.1.2) on Sizes 180 to 2200 and the shrink disks (1.8.2), please make sure that the installation sequence is suitable. In this way, normal torque wrenches can be used for installation of the disk pack (2).

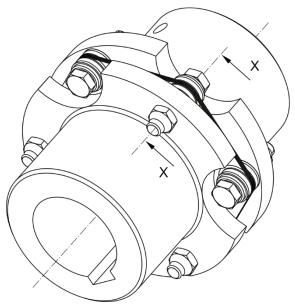


Fig. 9

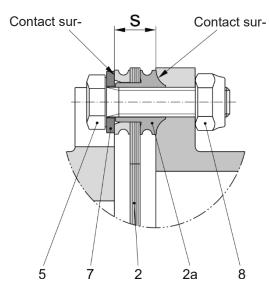
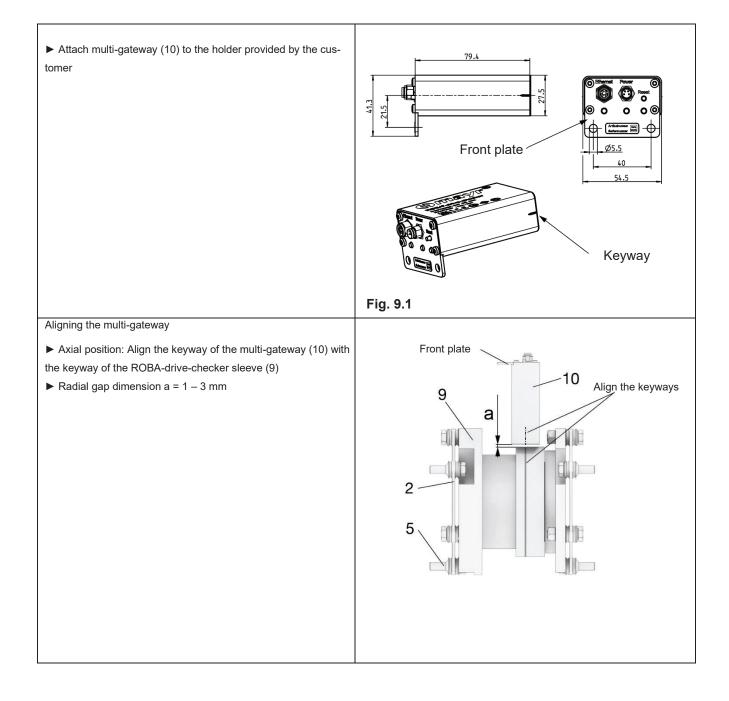


Fig. 9: Detail "X"


(B.9.7.EN)

Multi-gateway installation

Installing the multi-gateway (10)

Observe the separate installation and operational instructions B.0539006 for the multi-gateway!

Coupling Alignment

Exact coupling alignment reduces the reaction forces and therefore increases the lifetime of the coupling and the shaft bearing. In most of the applications, coupling alignment using a straight edge in two levels vertical to each other is sufficient. However, we recommend alignment of the coupling (of the shaft

ends) using a dial gauge or laser on drives operating at very high speeds.

In order to prevent axial distortion of the disk packs, the dimension "S" (Fig. 9, detail "X", Tables 1 or 2) must be maintained with aligned angular and radial shaft misalignments.

Permitted Shaft Misalignments

ROBA[®]-DS single-jointed couplings (Type 950.___) compensate for angular and axial shaft misalignments.

ROBA[®]-DS double-jointed couplings (Type 951.___) compensate for angular, axial and radial shaft misalignments (Fig. 11) without losing their backlash-free function. However, the permitted shaft misalignments indicated in Tables 1 or 2 must not simultaneously reach their maximum value. If more than one kind of misalignment takes place simultaneously, they influence each other. This means that the permitted misalignment values are dependent on one another, see Fig. 10. The sum total of the actual misalignments in percent of the maximum value must not exceed 100 % (see example and Fig. 10).

Example:

ROBA[®]-DS, Size 40, Type 951.002

Axial displacement occurrence ΔK_a = 0.6 mm equals 40 % of the permitted maximum value ΔK_a = 1.5 mm

Angular misalignment occurrence in the disk pack $\Delta K_w = 0.3^{\circ}$ equals 30 % of the permitted maximum value $\Delta K_w = 1^{\circ}$ => permitted radial misalignment $\Delta K_r = 30$ % of the maximum

value $\Delta K_r = 1.5 \text{ mm} \Rightarrow \Delta K_r = 0.45 \text{ mm}$

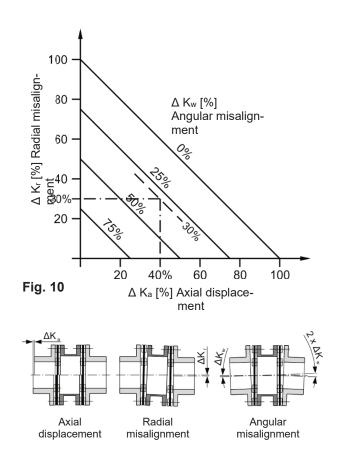
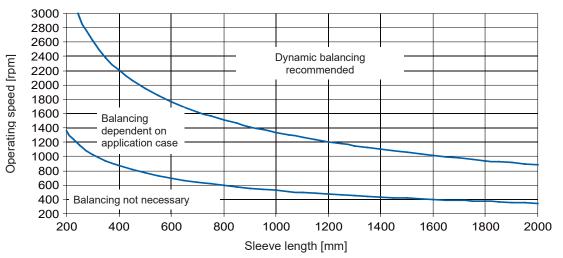


Fig. 11

Installation and Operational Instructions for ROBA[®]-DS Couplings Type 95_1^0 . _ _ _ (disk pack HF) Sizes 16 – 2200


(B.9.7.EN)

Balancing the Coupling

In most applications, balancing the ROBA[®]-DS coupling is not necessary. In general, the following points are crucial when deciding whether the coupling needs balancing:

- Circumferential speed of the coupling
- Length of the sleeves S/CRD/CFRP (Diagram 1)
- Required balance quality

Diagram 1: Balancing Couplings with Sleeve S/CRD/CFRP (Special Length)

Smooth running of the machine is not only ensured by the coupling balance quality, but is also influenced by parameters such as rigidity and distance to the adjacent bearings as well as by the sensitivity and mass of the entire construction.

Diagram 1, therefore, only shows reference values as recommendations for balancing.

All parts of the ROBA[®]-DS couplings, except the sleeves S/CRD/CFRP, are machined on all sides, and therefore lie in the range G6.3 acc. DIN ISO 1940 at medium speeds (1500 rpm).

If higher demands are placed on the balance quality, it is possible to balance individual parts or even the entire installed coupling (on request). However, for this option, the hubs must have a finish bore.

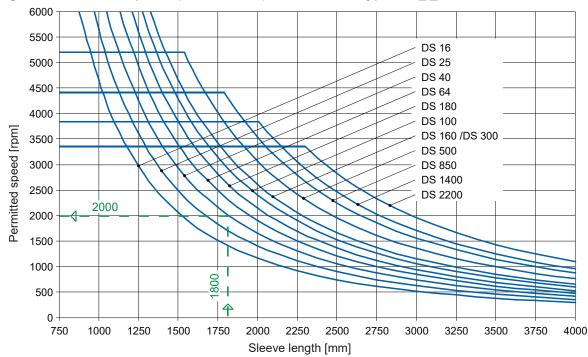
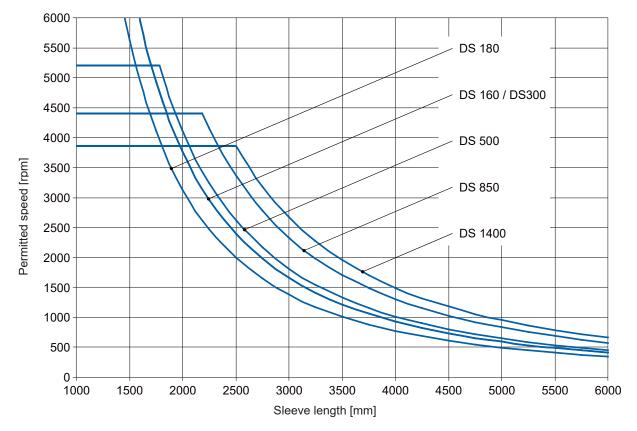


Diagram 2: Permitted Speeds (Bend-critical) for Sleeves S Type 951.__3


Example:

Size 40, sleeve length H_s = 1800 mm = > permitted speed 2000 rpm.

08/07/2024 TK/GH/HH/GC/GF

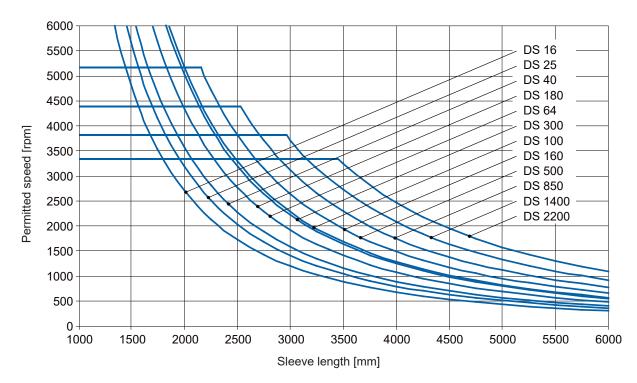

Chr. Mayr GmbH + Co. KG Eichenstraße 1, D-87665 Mauerstetten, Germany Phone: +49 8341 804-0, Fax: +49 8341 804-421 www.mayr.com, email: public.mayr@mayr.com

Diagram 3: Permitted Speeds (Bend-critical) for Sleeves CRD Type 951.__4

Diagram 4: Permitted Speeds (Bend-critical) for Sleeves CFRP Type 951.__5

Maintenance

ROBA®-DS couplings are largely maintenance-free.

The following maintenance and inspection intervals are to be maintained:

- 1.) Visual inspection, inspection of the installation parameters (misalignment and tightening torques) and the coupling running behavior **before initial operation**.
- 2.) Check the tightening torques produced after 5 to 10 operating hours.
- 3.) Visual inspection, torsional backlash, inspection of the misalignment and the tightening torques, coupling running behavior after 1000 h, at the latest after 3 months.
- 4.) If no irregularities or wear are found during the maintenance and inspection interval defined in point 3.), further inspection intervals can, with unchanged operating parameters, take place after 4000 operating hours or after maximum 12 months.

In extreme coupling ambient or operating conditions, the maintenance and inspection intervals should be shortened.

Disposal

All steel components and carbon pipes:

Steel scrap (Code No. 160117)

Electronic Components

Products which have not been disassembled can be disposed of under Code No. 160214 (mixed materials) or components under Code No. 160216 (Code No. acc. 200/532/EC), or can be disposed of by a certified disposal firm.

Malfunctions / Breakdowns

Malfunction	Possible Causes	Solutions
	Incorrect alignment, incorrect instal- lation	 Set the system out of operation Find / resolve the cause of incorrect alignment Check the clutch for wear
Changes to the running noise and/or	Loose connecting screws, minor fretting corrosion under the screw head and on the Disk pack	 Set the system out of operation Check the coupling parts and replace if damaged Tighten the connecting screws to the specified torque Check the alignment and correct if necessary
vibration occurrences	Tensioning and clamping screws or locking set screw for axial hub se- curement are loose	 Set the system out of operation Check the clutch alignment Tighten the tensioning and clamping screws for axial hub securement to the required torque or tighten the locking set screw and secure it against self-loosening using sealing lacquer Check the clutch for wear
	Disk pack breakage due to high load impacts / overload	 Set the system out of operation Dismantle the clutch and remove the remainders of the disk packs Check the clutch parts and replace if damaged Find the cause of overload and remove it
Disk pack breakage	Operating parameters are not appropriate for the coupling performance	 Set the system out of operation Check the operating parameters and select a suitable clutch (observe installation space) Install a new clutch Check the alignment
	Incorrect operation of the system unit	 Set the system out of operation Dismantle the clutch and remove the remainders of the disk packs Check the clutch parts and replace if damaged Train and advise operating personnel
Disk packs / connecting screws cracks or breakage	Drive vibrations	 Set the system out of operation Dismantle the clutch and remove the remainders of the disk packs Check the clutch parts and replace if damaged Check the alignment and correct if necessary Find the cause of vibration and remove it

 $mayr^{\otimes}$ will take no responsibility or guarantee for replacement parts and accessories which have not been delivered by $mayr^{\otimes}$, or for damage resulting from the use of these products.

08/07/2024 TK/GH/HH/GC/GF

Chr. Mayr GmbH + Co. KG Eichenstraße 1, D-87665 Mauerstetten, Germany Phone: +49 8341 804-0, Fax: +49 8341 804-421 www.mayr.com, email: public.mayr@mayr.com

